A note on ergodic transformations of self-similar Volterra Gaussian processes

被引:7
|
作者
Jost, Celine [1 ]
机构
[1] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
关键词
Volterra Gaussian process; self-similar process; ergodic transformation; fractional Brownian motion;
D O I
10.1214/ECP.v12-1298
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive a class of ergodic transformations of self-similar Gaussian processes that are Volterra, i.e. of type X-t = integral(t)(0) z(X)(t, s) dW(s), t is an element of [0,infinity), where z(X) is a deterministic kernel and W is a standard Brownian motion.
引用
收藏
页码:259 / 266
页数:8
相关论文
共 50 条
  • [21] Symmetric Stochastic Integrals with Respect to a Class of Self-similar Gaussian Processes
    Daniel Harnett
    Arturo Jaramillo
    David Nualart
    Journal of Theoretical Probability, 2019, 32 : 1105 - 1144
  • [22] Symmetric Stochastic Integrals with Respect to a Class of Self-similar Gaussian Processes
    Harnett, Daniel
    Jaramillo, Arturo
    Nualart, David
    JOURNAL OF THEORETICAL PROBABILITY, 2019, 32 (03) : 1105 - 1144
  • [23] LIMIT THEOREMS FOR ADDITIVE FUNCTIONALS OF SOME SELF-SIMILAR GAUSSIAN PROCESSES
    Hong, Minhao
    Liu, Heguang
    Xu, Fangjun
    ANNALS OF APPLIED PROBABILITY, 2024, 34 (06): : 5462 - 5497
  • [24] From infinite urn schemes to decompositions of self-similar Gaussian processes
    Durieu, Olivier
    Wang, Yizao
    ELECTRONIC JOURNAL OF PROBABILITY, 2016, 21
  • [25] ON A CLASS OF SELF-SIMILAR PROCESSES
    MAEJIMA, M
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 62 (02): : 235 - 245
  • [26] Self-similar extremal processes
    Pancheva E.I.
    Journal of Mathematical Sciences, 1998, 92 (3) : 3911 - 3920
  • [27] Mimicking self-similar processes
    Fan, Jie Yen
    Hamza, Kais
    Klebaner, Fima
    BERNOULLI, 2015, 21 (03) : 1341 - 1360
  • [28] On the aggregation of self-similar processes
    Mazzini, G
    Rovatti, R
    Setti, G
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2005, E88A (10) : 2656 - 2663
  • [29] ALPHA-DIMENSIONALITY OF ERGODIC SELF-SIMILAR MEASURES
    FAN, AH
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 316 (07): : 647 - 652
  • [30] Asymptotic behavior for an additive functional of two independent self-similar Gaussian processes
    Nualart, David
    Xu, Fangjun
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (10) : 3981 - 4008