Observation of a highly conductive warm dense state of water with ultrafast pump-probe free-electron-laser measurements

被引:9
|
作者
Chen, Z. [1 ]
Na, X. [1 ]
Curry, C. B. [1 ,2 ]
Liang, S. [1 ]
French, M. [3 ]
Descamps, A. [1 ,4 ]
DePonte, D. P. [1 ]
Koralek, J. D. [1 ]
Kim, J. B. [1 ]
Lebovitz, S. [1 ,5 ]
Nakatsutsumi, M. [6 ]
Ofori-Okai, B. K. [1 ]
Redmer, R. [3 ]
Roedel, C. [7 ,8 ]
Schorner, M. [3 ]
Skruszewicz, S. [9 ]
Sperling, P. [5 ]
Toleikis, S. [9 ]
Mo, M. Z. [1 ]
Glenzer, S. H. [1 ]
机构
[1] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
[2] Univ Alberta, Edmonton, AB T6G IH9, Canada
[3] Univ Rostock, Inst Phys, D-18051 Rostock, Germany
[4] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA
[5] Northwestern Univ, Evanston, IL 60208 USA
[6] European XFEL, D-22869 Schenefeld, Germany
[7] Friedrich Schiller Univ Jena, D-07743 Jena, Germany
[8] Tech Univ Darmstadt, D-64289 Darmstadt, Germany
[9] Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
INITIO MOLECULAR-DYNAMICS; SCATTERING; TRANSITION; URANUS;
D O I
10.1063/5.0043726
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The electrical conductivity of water under extreme temperatures and densities plays a central role in modeling planetary magnetic fields. Experimental data are vital to test theories of high-energy-density water and assess the possible development and presence of extraterrestrial life. These states are also important in biology and chemistry studies when specimens in water are confined and excited using ultrafast optical or free-electron lasers (FELs). Here we utilize femtosecond optical lasers to measure the transient reflection and transmission of ultrathin water sheet samples uniformly heated by a 13.6 nm FEL approaching a highly conducting state at electron temperatures exceeding 20 000 K. The experiment probes the trajectory of water through the high-energy-density phase space and provides insights into changes in the index of refraction, charge carrier densities, and AC electrical conductivity at optical frequencies. At excitation energy densities exceeding 10 MJ/kg, the index of refraction falls to n = 0.7, and the thermally excited free-carrier density reaches n(e) = 5 x 10(27) m(-3), which is over an order of magnitude higher than that of the electron carriers produced by direct photoionization. Significant specular reflection is observed owing to critical electron density shielding of electromagnetic waves. The measured optical conductivity reaches 2 x 10(4) S/m, a value that is one to two orders of magnitude lower than those of simple metals in a liquid state. At electron temperatures below 15 000 K, the experimental results agree well with the theoretical calculations using density-functional theory/molecular-dynamics simulations. With increasing temperature, the electron density increases and the system approaches a Fermi distribution. In this regime, the conductivities agree better with predictions from the Ziman theory of liquid metals.
引用
下载
收藏
页数:12
相关论文
共 45 条
  • [21] Optical beam transport to a remote location for low jitter pump-probe experiments with a free electron laser
    Cinquegrana, P.
    Cleva, S.
    Demidovich, A.
    Gaio, G.
    Ivanov, R.
    Kurdi, G.
    Nikolov, I.
    Sigalotti, P.
    Danailov, M. B.
    PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2014, 17 (04):
  • [22] Experimental demonstration of attosecond pump-probe spectroscopy with an X-ray free-electron laser
    Guo, Zhaoheng
    Driver, Taran
    Beauvarlet, Sandra
    Cesar, David
    Duris, Joseph
    Franz, Paris L.
    Alexander, Oliver
    Bohler, Dorian
    Bostedt, Christoph
    Averbukh, Vitali
    Cheng, Xinxin
    Dimauro, Louis F.
    Doumy, Gilles
    Forbes, Ruaridh
    Gessner, Oliver
    Glownia, James M.
    Isele, Erik
    Kamalov, Andrei
    Larsen, Kirk A.
    Li, Siqi
    Li, Xiang
    Lin, Ming-Fu
    Mccracken, Gregory A.
    Obaid, Razib
    O'Neal, Jordan T.
    Robles, River R.
    Rolles, Daniel
    Ruberti, Marco
    Rudenko, Artem
    Slaughter, Daniel S.
    Sudar, Nicholas S.
    Thierstein, Emily
    Tuthill, Daniel
    Ueda, Kiyoshi
    Wang, Enliang
    Wang, Anna L.
    Wang, Jun
    Weber, Thorsten
    Wolf, Thomas J. A.
    Young, Linda
    Zhang, Zhen
    Bucksbaum, Philip H.
    Marangos, Jon P.
    Kling, Matthias F.
    Huang, Zhirong
    Walter, Peter
    Inhester, Ludger
    Berrah, Nora
    Cryan, James P.
    Marinelli, Agostino
    NATURE PHOTONICS, 2024, 18 (07) : 691 - 697
  • [23] Soft X-ray backlighter source driven by a short-pulse laser for pump-probe characterization of warm dense matter
    McGuffey, C.
    Dozieres, M.
    Kim, J.
    Savin, A.
    Park, J.
    Emig, J.
    Brabetz, C.
    Carlson, L.
    Heeter, R. F.
    McLean, H. S.
    Moody, J.
    Schneider, M. B.
    Wei, M. S.
    Beg, F. N.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (10):
  • [24] Subnanometer-scale measurements of the interaction of ultrafast soft X-ray free-electron-laser pulses with matter
    Hau-Riege, Stefan P.
    Chapman, Henry N.
    Krzywinski, Jacek
    Sobierajski, Ryszard
    Bajt, Sasa
    London, Richard A.
    Bergh, Magnus
    Caleman, Carl
    Nietubyc, Robert
    Juha, Libor
    Kuba, Jaroslav
    Spiller, Eberhard
    Baker, Sherry
    Bionta, Richard
    Tinten, K. Sokolowski
    Stojanovic, Nikola
    Kjornrattanawanich, Benjawan
    Gullikson, Eric
    Ploenjes, Elke
    Toleikis, Sven
    Tschentscher, Thomas
    PHYSICAL REVIEW LETTERS, 2007, 98 (14)
  • [25] Pump-probe spectroscopy of ultrafast electron injection from the excited state of an anchored chromophore to a semiconductor surface in UHV: A theoretical model
    Ramakrishna, S
    Willig, F
    JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (01): : 68 - 77
  • [26] Development of a pump-probe facility combining a far-infrared source with laser-like characteristics and a VUV free electron laser
    Faatz, B
    Fateev, AA
    Feldhaus, J
    Krzywinski, J
    Pflueger, J
    Rossbach, J
    Saldin, EL
    Schneidmiller, EA
    Yurkov, MV
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2001, 475 (1-3): : 363 - 367
  • [27] Jitter-correction for IR/UV-XUV pump-probe experiments at the FLASH free-electron laser
    Savelyev, Evgeny
    Boll, Rebecca
    Bomme, Cedric
    Schirmel, Nora
    Redlin, Harald
    Erk, Benjamin
    Duesterer, Stefan
    Mueller, Erland
    Hoeppner, Hauke
    Toleikis, Sven
    Mueller, Jost
    Czwalinna, Marie Kristin
    Treusch, Rolf
    Kierspel, Thomas
    Mullins, Terence
    Trippel, Sebastian
    Wiese, Joss
    Kuepper, Jochen
    Brausse, Felix
    Krecinic, Faruk
    Rouzee, Arnaud
    Rudawski, Piotr
    Johnsson, Per
    Amini, Kasra
    Lauer, Alexandra
    Burt, Michael
    Brouard, Mark
    Christensen, Lauge
    Thogersen, Jan
    Stapelfeldt, Henrik
    Berrah, Nora
    Mueller, Maria
    Ulmer, Anatoli
    Techert, Simone
    Rudenko, Artem
    Rolles, Daniel
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [28] Pump-probe laser system at the FXE and SPB/SFX instruments of the European X-ray Free-Electron Laser Facility
    Palmer, Guido
    Kellert, Martin
    Wang, Jinxiong
    Emons, Moritz
    Wegner, Ulrike
    Kane, Daniel
    Pallas, Florent
    Jezynski, Tomasz
    Venkatesan, Sandhya
    Rompotis, Dimitrios
    Brambrink, Erik
    Monoszlai, Balazs
    Jiang, Man
    Meier, Joachim
    Kruse, Kai
    Pergament, Mikhail
    Lederer, Max J.
    JOURNAL OF SYNCHROTRON RADIATION, 2019, 26 (02) : 328 - 332
  • [29] URSA-PQ: A Mobile and Flexible Pump-Probe Instrument for Gas Phase Samples at the FLASH Free Electron Laser
    Metje, Jan
    Lever, Fabiano
    Mayer, Dennis
    Squibb, Richard James
    Robinson, Matthew S.
    Niebuhr, Mario
    Feifel, Raimund
    Duesterer, Stefan
    Guehr, Markus
    APPLIED SCIENCES-BASEL, 2020, 10 (21): : 1 - 13
  • [30] Double chirp-taper x-ray free-electron laser for attosecond pump-probe experiments
    Zhang, Zhen
    Duris, Joseph
    MacArthur, James P.
    Huang, Zhirong
    Marinelli, Agostino
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2019, 22 (05):