Adaptive selection of polynomial degrees of a finite element mesh

被引:0
|
作者
Bertoti, E [1 ]
Szabo, B [1 ]
机构
[1] Washington Univ, Ctr Computat Mech, St Louis, MO 63130 USA
关键词
finite element method; adaptivity; a posteriori error estimation;
D O I
10.1002/(SICI)1097-0207(19980615)42:3<561::AID-NME379>3.3.CO;2-Z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The problem of finding a nearly optimal distribution of polynomial degrees on a fixed finite element mesh is discussed. An a posteriori error estimator based-on the minimum complementary energy principle is proposed which utilizes the displacement vector held computed from the finite element solution. This estimator, designed for p- and hp-extensions, is conceptually different from estimators based on residuals or patch recovery which are designed for h-extension procedures, The quality of the error estimator is demonstrated by examples. The results show that the effectivity index is reasonably close to unity and the sequences of p-distributions obtained with the error indicators closely follow the optimal trajectory. (C) 1998 John Wiley & Sons, Ltd.
引用
收藏
页码:561 / 578
页数:18
相关论文
共 50 条
  • [21] ON THE ADAPTIVE SELECTION OF THE PARAMETER IN STABILIZED FINITE ELEMENT APPROXIMATIONS
    Ainsworth, Mark
    Allendes, Alejandro
    Barrenechea, Gabriel R.
    Rankin, Richard
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (03) : 1585 - 1609
  • [22] A POSTERIORI ERROR ESTIMATE FOR ADAPTIVE FINITE-ELEMENT MESH GENERATION
    HAHN, SY
    CALMELS, C
    MEUNIER, G
    COULOMB, JL
    IEEE TRANSACTIONS ON MAGNETICS, 1988, 24 (01) : 315 - 317
  • [23] r-adaptive mesh generation for shell finite element analysis
    Cho, M
    Jun, S
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 199 (01) : 291 - 316
  • [24] Results on 3-D adaptive finite element mesh generation
    Montenegro, R
    Montero, G
    Escobar, JM
    Rodríguez, E
    González-Yuste, JM
    NEURAL, PARALLEL, AND SCIENTIFIC COMPUTATIONS, VOL 2, PROCEEDINGS, 2002, : 197 - 200
  • [25] Parallel adaptive mesh refinement with load balancing for finite element method
    Kopyssov, S
    Novikov, A
    PARALLEL COMPUTING TECHNOLOGIES, 2001, 2127 : 266 - 276
  • [26] Fatigue crack propagation analysis with the adaptive finite element mesh generator
    Kovse, L
    FATIGUE DAMAGE OF MATERIALS: EXPERIMENT AND ANALYSIS, 2003, 5 : 89 - 98
  • [27] NODAL PERTURBATIONS IN ADAPTIVE EXPERT FINITE-ELEMENT MESH GENERATION
    HOOLE, SRH
    IEEE TRANSACTIONS ON MAGNETICS, 1987, 23 (05) : 2635 - 2637
  • [28] An adaptive mesh refinement strategy for finite element solution of the elliptic problem
    Aulisa, E.
    Ke, G.
    Lee, S-Y.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (02) : 224 - 244
  • [29] Adaptive mesh refinement for high-resolution finite element schemes
    Moeller, M.
    Kuzmin, D.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2006, 52 (05) : 545 - 569
  • [30] Adaptive mesh refinement for the control of cost and quality in finite element analysis
    Bellenger, E
    Coorevits, P
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2005, 41 (15) : 1413 - 1440