Decoding Reed-Solomon Skew-Differential Codes

被引:0
|
作者
Gomez-Torrecillas, Jose [1 ,2 ]
Navarro, Gabriel [3 ,4 ]
Patricio Sanchez-Hernandez, Jose [2 ]
机构
[1] Univ Granada, IMAG, Granada 18071, Spain
[2] Univ Granada, Dept Algebra, Granada 18071, Spain
[3] Univ Granada, CITIC, Granada 18071, Spain
[4] Univ Granada, Dept Comp Sci & Artificial Intelligence, Granada 18071, Spain
关键词
Codes; Decoding; Reed-Solomon codes; Additives; Kernel; Convolutional codes; Linear codes; convolutional codes; decoding; skew codes; CONVOLUTIONAL-CODES; ALGORITHM; RANK;
D O I
10.1109/TIT.2021.3117083
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A large class of MDS linear codes is constructed. These codes are endowed with an efficient decoding algorithm. Both the definition of the codes and the design of their decoding algorithm only require from Linear Algebra methods, making them fully accessible for everyone. Thus, the first part of the paper develops a direct presentation of the codes by means of parity-check matrices, and the decoding algorithm rests upon matrix and linear maps manipulations. The somewhat more sophisticated mathematical context (non-commutative rings) needed for the proof of the correctness of the decoding algorithm is postponed to the second part. A final section locates the Reed-Solomon skew-differential codes introduced here within the general context of codes defined by means of skew polynomial rings.
引用
收藏
页码:7891 / 7903
页数:13
相关论文
共 50 条
  • [31] Subcodes of Reed-Solomon codes suitable for soft decoding
    Raj, Safitha J.
    Thangaraj, Andrew
    [J]. APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 2007, 4851 : 217 - +
  • [32] Subspace polynomials and list decoding of Reed-Solomon codes
    Ben-Sasson, Eli
    Kopparty, Swastik
    Radhakrishnan, Jaikumar
    [J]. 47TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2006, : 207 - +
  • [33] Decoding of Reed-Solomon codes for additive cost functions
    Koetter, R
    Vardy, A
    [J]. ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, : 313 - 313
  • [34] Simple algorithms for decoding systematic Reed-Solomon codes
    Mateer, Todd D.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2013, 69 (01) : 107 - 121
  • [35] FAST TRANSFORM DECODING OF NONSYSTEMATIC REED-SOLOMON CODES
    SHIOZAKI, A
    TRUONG, TK
    CHEUNG, KM
    REED, IS
    [J]. IEE PROCEEDINGS-E COMPUTERS AND DIGITAL TECHNIQUES, 1990, 137 (02): : 139 - 143
  • [36] Fast Chase Algorithms for Decoding Reed-Solomon Codes
    Chu, Shao-I
    Chen, Yan-Haw
    Chiu, Yi-Chan
    Chang, Ru-Sian
    [J]. 2014 INTERNATIONAL SYMPOSIUM ON NEXT-GENERATION ELECTRONICS (ISNE), 2014,
  • [37] Modified Euclidean Algorithms for Decoding Reed-Solomon Codes
    Sarwate, Dilip V.
    Yan, Zhiyuan
    [J]. 2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 1398 - +
  • [38] On Cauchy Matrices for Remainder Decoding of Reed-Solomon Codes
    Ma, Chingwo
    [J]. IEEE COMMUNICATIONS LETTERS, 2009, 13 (09) : 688 - 690
  • [39] Iterative list decoding approach for reed-solomon codes
    Zhijun, Zhang
    Kai, Niu
    Chao, Dong
    [J]. Journal of China Universities of Posts and Telecommunications, 2019, 26 (03): : 8 - 14
  • [40] Time domain decoding of extended Reed-Solomon codes
    Joiner, LL
    Komo, JJ
    [J]. PROCEEDINGS OF THE IEEE SOUTHEASTCON '96: BRINGING TOGETHER EDUCATION, SCIENCE AND TECHNOLOGY, 1996, : 238 - 241