Decoding Reed-Solomon Skew-Differential Codes

被引:0
|
作者
Gomez-Torrecillas, Jose [1 ,2 ]
Navarro, Gabriel [3 ,4 ]
Patricio Sanchez-Hernandez, Jose [2 ]
机构
[1] Univ Granada, IMAG, Granada 18071, Spain
[2] Univ Granada, Dept Algebra, Granada 18071, Spain
[3] Univ Granada, CITIC, Granada 18071, Spain
[4] Univ Granada, Dept Comp Sci & Artificial Intelligence, Granada 18071, Spain
关键词
Codes; Decoding; Reed-Solomon codes; Additives; Kernel; Convolutional codes; Linear codes; convolutional codes; decoding; skew codes; CONVOLUTIONAL-CODES; ALGORITHM; RANK;
D O I
10.1109/TIT.2021.3117083
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A large class of MDS linear codes is constructed. These codes are endowed with an efficient decoding algorithm. Both the definition of the codes and the design of their decoding algorithm only require from Linear Algebra methods, making them fully accessible for everyone. Thus, the first part of the paper develops a direct presentation of the codes by means of parity-check matrices, and the decoding algorithm rests upon matrix and linear maps manipulations. The somewhat more sophisticated mathematical context (non-commutative rings) needed for the proof of the correctness of the decoding algorithm is postponed to the second part. A final section locates the Reed-Solomon skew-differential codes introduced here within the general context of codes defined by means of skew polynomial rings.
引用
收藏
页码:7891 / 7903
页数:13
相关论文
共 50 条
  • [1] An algorithm for decoding skew Reed-Solomon codes with respect to the skew metric
    Boucher, Delphine
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (09) : 1991 - 2005
  • [2] DECODING OF REED-SOLOMON CODES
    MANDELBAUM, D
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1971, 17 (06) : 707 - +
  • [3] Sequential Decoding of Reed-Solomon Codes
    Miloslavskaya, Vera
    Trifonov, Peter
    [J]. 2014 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (ISITA), 2014, : 453 - 457
  • [4] Parallel decoding of the Reed-Solomon codes
    Sukhov, EG
    [J]. AUTOMATION AND REMOTE CONTROL, 2001, 62 (12) : 2037 - 2041
  • [5] COMPLEXITY OF DECODING REED-SOLOMON CODES
    JUSTESEN, J
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1976, 22 (02) : 237 - 238
  • [6] THE DECODING OF EXTENDED REED-SOLOMON CODES
    DUR, A
    [J]. DISCRETE MATHEMATICS, 1991, 90 (01) : 21 - 40
  • [7] On Fractional Decoding of Reed-Solomon Codes
    Santos, Welington
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 1552 - 1556
  • [8] Soft Reed-Solomon decoding for concatenated codes
    Panigrahi, S
    Szczecinski, LL
    Labeau, F
    [J]. CCECE 2003: CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-3, PROCEEDINGS: TOWARD A CARING AND HUMANE TECHNOLOGY, 2003, : 1643 - +
  • [9] Power Decoding of Reed-Solomon Codes Revisited
    Nielsen, Johan S. R.
    [J]. CODING THEORY AND APPLICATIONS, 4TH INTERNATIONAL CASTLE MEETING, 2015, 3 : 297 - 305
  • [10] Soft decision decoding of Reed-Solomon codes
    Ponnampalam, V
    Vucetic, B
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2002, 50 (11) : 1758 - 1768