Nonlinear gradient estimates for elliptic double obstacle problems with measure data

被引:5
|
作者
Byun, Sun-Sig [1 ,2 ]
Cho, Yumi [1 ]
Park, Jung-Tae [3 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[3] Korea Inst Adv Study, Seoul 02455, South Korea
关键词
Elliptic double obstacle problem; Measure data; Variable exponent growth; Gradient estimate; Reifenberg flat domain; REIFENBERG FLAT DOMAINS; PARABOLIC EQUATIONS; UNILATERAL PROBLEMS; REGULARITY; POTENTIALS; UNIQUENESS; EXISTENCE;
D O I
10.1016/j.jde.2021.05.035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study quasilinear elliptic double obstacle problems with a variable exponent growth when the righthand side is a measure. A global Calder & oacute;n-Zygmund estimate for the gradient of an approximable solution is obtained in terms of the associated double obstacles and a given measure, identifying minimal requirements for the regularity estimate. (c) 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:249 / 281
页数:33
相关论文
共 50 条
  • [31] Lorentz estimates for the gradient of weak solutions to elliptic obstacle problems with partially BMO coefficients
    Hong Tian
    Shenzhou Zheng
    [J]. Boundary Value Problems, 2017
  • [32] Potential estimates for elliptic measure data problems with irregular obstacles
    Byun, Sun-Sig
    Song, Kyeong
    Youn, Yeonghun
    [J]. MATHEMATISCHE ANNALEN, 2023, 387 (1-2) : 745 - 805
  • [33] Potential estimates for elliptic measure data problems with irregular obstacles
    Sun-Sig Byun
    Kyeong Song
    Yeonghun Youn
    [J]. Mathematische Annalen, 2023, 387 : 745 - 805
  • [34] Fractional Regularity for Nonlinear Elliptic Problems with Measure Data
    Di Castro, Agnese
    Palatucci, Giampiero
    [J]. JOURNAL OF CONVEX ANALYSIS, 2013, 20 (04) : 901 - 918
  • [35] On mixed error estimates for elliptic obstacle problems
    Liu, WB
    Ma, HP
    Tang, T
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2001, 15 (1-4) : 261 - 283
  • [36] UNIFORMLY NONLINEAR ELLIPTIC PROBLEMS WITH OBSTACLE
    Aharouch, Lahsen
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (03) : 793 - 813
  • [37] On Mixed Error Estimates for Elliptic Obstacle Problems
    Wenbin Liu
    Heping Ma
    Tao Tang
    [J]. Advances in Computational Mathematics, 2001, 15 : 261 - 283
  • [38] On a class of nonlinear elliptic problems with obstacle
    Aharouch, Lahsen
    Alaoui, Mohammed Kbiri
    Di Fazio, Giuseppe
    Altanji, Mohamed
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (05) : 665 - 675
  • [39] L∞-Estimates for nonlinear elliptic problems with p-growth in the gradient
    Ferone, V
    Posteraro, MR
    Rakotoson, JM
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 1999, 3 (02): : 109 - 125
  • [40] Existence and uniqueness of solutions for nonlinear obstacle problems with measure data
    Leone, C
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 43 (02) : 199 - 215