Nonlinear gradient estimates for elliptic double obstacle problems with measure data

被引:5
|
作者
Byun, Sun-Sig [1 ,2 ]
Cho, Yumi [1 ]
Park, Jung-Tae [3 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[3] Korea Inst Adv Study, Seoul 02455, South Korea
关键词
Elliptic double obstacle problem; Measure data; Variable exponent growth; Gradient estimate; Reifenberg flat domain; REIFENBERG FLAT DOMAINS; PARABOLIC EQUATIONS; UNILATERAL PROBLEMS; REGULARITY; POTENTIALS; UNIQUENESS; EXISTENCE;
D O I
10.1016/j.jde.2021.05.035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study quasilinear elliptic double obstacle problems with a variable exponent growth when the righthand side is a measure. A global Calder & oacute;n-Zygmund estimate for the gradient of an approximable solution is obtained in terms of the associated double obstacles and a given measure, identifying minimal requirements for the regularity estimate. (c) 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:249 / 281
页数:33
相关论文
共 50 条