Towards asynchronous brain-computer interfaces: A P300-based approach with statistical models

被引:1
|
作者
Zhang, Haihong [1 ]
Wang, Chuanchu [1 ]
Guan, Cuntai [1 ]
机构
[1] Inst Infocomm Res, Singapore 119613, Singapore
关键词
D O I
10.1109/IEMBS.2007.4353479
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Asynchronous control is a critical issue in developing brain-computer interfaces for real-life applications, where the machine should be able to detect the occurrence of a mental command. In this paper we propose a computational approach for robust asynchronous control using the P300 signal, in a variant of oddball paradigm. First, we use Gaussian models in the support vector margin space to describe various types of EEG signals that are present in an asynchronous P300-based BCI. This allows us to derive a probability measure of control state given EEG observations. Second, we devise a recursive algorithm to detect and locate control states in ongoing EEG. Experimental results indicate that our system allows information transfer at approx. 20bit/min at low false alarm rate (1/min).
引用
收藏
页码:5067 / 5070
页数:4
相关论文
共 50 条
  • [21] A Binary Bees Algorithm for P300-Based Brain-Computer Interfaces Channel Selection
    Martinez-Cagigal, Victor
    Hornero, Roberto
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2017, PT II, 2017, 10306 : 453 - 463
  • [22] An Asynchronous P300-Based Brain-Computer Interface Web Browser for Severely Disabled People
    Martinez-Cagigal, Victor
    Gomez-Pilar, Javier
    Alvarez, Daniel
    Hornero, Roberto
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2017, 25 (08) : 1332 - 1342
  • [23] Transfer approach for the detection of missed task-relevant events in P300-based brain-computer interfaces
    Kirchner, Elsa Andrea
    Kim, Su Kyoung
    [J]. 2019 9TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2019, : 134 - 138
  • [24] TOWARDS STUDENT CONCENTRATION ASSESSMENT USING P300-BASED BRAIN-COMPUTER INTERFACE
    Plechawska-Wojcik, Malgorzata
    Kaczorowska, Monika
    [J]. INTED2016: 10TH INTERNATIONAL TECHNOLOGY, EDUCATION AND DEVELOPMENT CONFERENCE, 2016, : 844 - 852
  • [25] Improving the Performance of P300-based Brain-Computer Interface
    Garakani, Golnoosh
    Amiri, Mahmood
    Menhaj, Mohammad Bagher
    [J]. 2016 4TH INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, AND AUTOMATION (ICCIA), 2016, : 329 - 332
  • [26] The MindGame: A P300-based brain-computer interface game
    Finke, Andrea
    Lenhardt, Alexander
    Ritter, Helge
    [J]. NEURAL NETWORKS, 2009, 22 (09) : 1329 - 1333
  • [27] A P300-Based Brain-Computer Interface for Improving Attention
    Arvaneh, Mahnaz
    Robertson, Ian H.
    Ward, Tomas E.
    [J]. FRONTIERS IN HUMAN NEUROSCIENCE, 2019, 12
  • [28] An adaptive P300-based online brain-computer interface
    Lenhardt, Alexander
    Kaper, Matthias
    Ritter, Helge J.
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2008, 16 (02) : 121 - 130
  • [29] P300-Based Brain-Computer Interface for Internet Browsing
    Sirvent, Jose L.
    Azorin, Jose M.
    Ianez, Eduardo
    Ubeda, Andres
    Fernandez, Eduardo
    [J]. TRENDS IN PRACTICAL APPLICATIONS OF AGENTS AND MULTIAGENT SYSTEMS, 2010, 71 : 615 - 622
  • [30] Task-relevant stimulus design improves P300-based brain-computer interfaces
    Kim, Jongsu
    Cho, Yang Seok
    Kim, Sung-Phil
    [J]. Journal of Neural Engineering, 2024, 21 (06)