Finite-Time Stabilizability, Detectability, and Dynamic Output Feedback Finite-Time Stabilization of Linear Systems

被引:24
|
作者
Amato, F. [1 ]
Darouach, M. [2 ]
De Tommasi, G. [3 ]
机构
[1] Magna Graecia Univ Catanzaro, Sch Comp & Biomed Engn, Dipartimento Med Sperimentale & Clin, I-88100 Catanzaro, Italy
[2] Univ Lorraine IUT Longwy, CRAN CNRS UMR 7039, F-54400 Cosnes Et Romain, France
[3] Univ Napoli Federico II, Dipartimento Ingn Elettr & Tecnol Informaz, I-80125 Naples, Italy
关键词
Differential linear matrix inequalities (DLMIs); dynamical output feedback; finite-time stabilizability and detectability; linear systems; Luenberger observer; separation principle (SP); STABILITY; STATE;
D O I
10.1109/TAC.2017.2660758
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this note, we deal with linear systems and we extend to the finite-time setting the concepts of stabilizability and detectability. It will be shown that, similarly to what happens in the classical Lyapunov framework, even in the finite-time context, stabilizability and detectability play a role into the existence of stabilizing dynamical controllers. We prove that a dynamic output feedback controller, which finite-time stabilizes the overall closed-loop system, exists if and only if the open-loop system is finite-time detectable and stabilizable plus a further linear matrix inequality coupling condition. We also show that, in the finite-time context, the equivalence between stabilizability via output feedback and stabilizability via observer-based controllers is no longer true.
引用
收藏
页码:6521 / 6528
页数:8
相关论文
共 50 条
  • [1] Finite-Time Stabilizability and Detectability of Linear Systems. Part II: Design of Observer Based Output Feedback Finite-Time Stabilizing Controllers
    Amato, F.
    Darouach, M.
    De Tommasi, G.
    [J]. 2016 EUROPEAN CONTROL CONFERENCE (ECC), 2016, : 1406 - 1411
  • [2] Finite-Time Stabilizability and Detectability of Linear Systems. Part I: Necessary and Sufficient Conditions for the Existence of Output Feedback Finite-Time Stabilizing Controllers
    Amato, F.
    Darouach, M.
    De Tommasi, G.
    [J]. 2016 EUROPEAN CONTROL CONFERENCE (ECC), 2016, : 1412 - 1417
  • [3] Input-output finite-time stabilization of linear systems with finite-time boundedness
    Guo, Yang
    Yao, Yu
    Wang, Shicheng
    Ma, Kemao
    Liu, Kai
    Guo, Jian
    [J]. ISA TRANSACTIONS, 2014, 53 (04) : 977 - 982
  • [4] Finite-time stabilization via dynamic output feedback
    Amato, F
    Ariola, M
    Cosentino, C
    [J]. AUTOMATICA, 2006, 42 (02) : 337 - 342
  • [5] Finite-Time Stability and Dynamic Output Feedback Stabilization of Stochastic Systems
    Yun Chen
    Hongbo Zou
    Renquan Lu
    Anke Xue
    [J]. Circuits, Systems, and Signal Processing, 2014, 33 : 53 - 69
  • [6] Finite-Time Stability and Dynamic Output Feedback Stabilization of Stochastic Systems
    Chen, Yun
    Zou, Hongbo
    Lu, Renquan
    Xue, Anke
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2014, 33 (01) : 53 - 69
  • [7] Finite-Time Dynamic Output Feedback Stabilization of Delayed Stochastic Systems
    Chen, Yun
    Li, Qingqing
    Xue, Anke
    Ge, Ming
    Wang, Junhong
    [J]. 2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 5246 - 5250
  • [8] On an output feedback finite-time stabilization problem
    Hong, YR
    Huang, J
    Xu, YS
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (02) : 305 - 309
  • [9] Finite-time stabilization and stabilizability of a class of controllable systems
    Hong, YG
    [J]. SYSTEMS & CONTROL LETTERS, 2002, 46 (04) : 231 - 236
  • [10] Finite-time dynamic output feedback stabilization of linear time-varying systems by a piecewise constant method
    Liang, Chao
    Cai, Chenxiao
    Xu, Jing
    [J]. TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2018, 40 (14) : 4078 - 4088