Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine

被引:43
|
作者
Valencia Ochoa, Guillermo [1 ]
Cardenas Gutierrez, Javier [2 ]
Duarte Forero, Jorge [1 ]
机构
[1] Univ Atlantico, Programa Ingn Mecan, Carrera 30 8-49, Barranquilla 080007, Colombia
[2] Univ Francisco de Paula Santander, Fac Ingn, Ave Gran Colombia 12E-96, Cucuta 540003, Colombia
来源
RESOURCES-BASEL | 2020年 / 9卷 / 01期
关键词
organic Rankine cycle; organic working fluids; LCOE; thermodynamic analysis; economic analysis; LCA; ORGANIC RANKINE-CYCLE; THERMOECONOMIC ANALYSIS; POWER-GENERATION; MULTIOBJECTIVE OPTIMIZATION; WORKING FLUID; PERFORMANCE; ENERGY; MIXTURES; IMPACT; FUEL;
D O I
10.3390/resources9010002
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this article, an organic Rankine cycle (ORC) was integrated into a 2-MW natural gas engine to evaluate the possibility of generating electricity by recovering the engine's exhaust heat. The operational and design variables with the greatest influence on the energy, economic, and environmental performance of the system were analyzed. Likewise, the components with greater exergy destruction were identified through the variety of different operating parameters. From the parametric results, it was found that the evaporation pressure has the greatest influence on the destruction of exergy. The highest fraction of exergy was obtained for the Shell and tube heat exchanger (ITC1) with 38% of the total exergy destruction of the system. It was also determined that the high value of the heat transfer area increases its acquisition costs and the levelized cost of energy (LCOE) of the thermal system. Therefore, these systems must have a turbine technology with an efficiency not exceeding 90% because, from this value, the LCOE of the system surpasses the LCOE of a gas turbine. Lastly, a life cycle analysis (LCA) was developed on the system operating under the selected organic working fluids. It was found that the component with the greatest environmental impact was the turbine, which reached a maximum value of 3013.65 Pts when the material was aluminum. Acetone was used as the organic working fluid.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Economic assessment of greenhouse gas reduction through low-grade waste heat recovery using organic Rankine cycle (ORC)
    Muhammad Imran
    Byung-Sik Park
    Hyouck-Ju Kim
    Dong-Hyun Lee
    Muhammad Usman
    Journal of Mechanical Science and Technology, 2015, 29 : 835 - 843
  • [42] A life-cycle assessment of battery electric and internal combustion engine vehicles: A case in Hebei Province, China
    Shi, Sainan
    Zhang, Haoran
    Yang, Wen
    Zhang, Qianru
    Wang, Xuejun
    JOURNAL OF CLEANER PRODUCTION, 2019, 228 : 606 - 618
  • [43] Experimental study on waste heat recovery system of an internal combustion engine using thermoelectric technology
    Suhaimi, Nur Athirah
    Singh, Baljit
    Remeli, Muhammad Fairuz
    INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY AND GREEN TECHNOLOGY 2019, 2020, 463
  • [44] Parametric optimisation of a combined supercritical CO2 (S-CO2) cycle and organic Rankine cycle (ORC) system for internal combustion engine (ICE) waste-heat recovery
    Song, Jian
    Li, Xiaoya
    Wang, Kai
    Markides, Christos N.
    ENERGY CONVERSION AND MANAGEMENT, 2020, 218
  • [45] Parametric optimisation of a combined supercritical CO2 (S-CO2) cycle and organic Rankine cycle (ORC) system for internal combustion engine (ICE) waste-heat recovery
    Clean Energy Processes Laboratory, Department of Chemical Engineering, Imperial College London, London
    SW7 2AZ, United Kingdom
    不详
    300072, China
    不详
    310027, China
    Energy Convers. Manage.,
  • [46] Thermo-Economic Analysis of a Bottoming Kalina Cycle for Internal Combustion Engine Exhaust Heat Recovery
    Gao, Hong
    Chen, Fuxiang
    ENERGIES, 2018, 11 (11)
  • [47] Exergy assessment of an Organic Rankine Cycle for waste heat recovery from a refrigeration system: a review
    Malwe, Prateek
    Gawali, Bajirao
    Shaikh, Juned
    Deshpande, Mayur
    Dhalait, Rustam
    Kulkarni, Shivani
    Shindagi, Vaishnavi
    Panchal, Hitesh
    Sadasivuni, Kishor Kumar
    CHEMICAL ENGINEERING COMMUNICATIONS, 2023, 210 (05) : 837 - 865
  • [48] Analysis of a Waste Heat Recovery System for a Gas Engine
    Chen Bo
    Wang Genquan
    Zhang Limin
    Wang Xuan
    Liu Peng
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY AND MANAGEMENT SCIENCE (ITMS 2015), 2015, 34 : 993 - 998
  • [49] Life-cycle environmental and economic assessment of medical waste treatment
    Hong, Jingmin
    Zhan, Song
    Yu, Zhaohe
    Hong, Jinglan
    Qi, Congcong
    JOURNAL OF CLEANER PRODUCTION, 2018, 174 : 65 - 73
  • [50] Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery
    Wang, E. H.
    Zhang, H. G.
    Fan, B. Y.
    Ouyang, M. G.
    Zhao, Y.
    Mu, Q. H.
    ENERGY, 2011, 36 (05) : 3406 - 3418