NBA Playoff Prediction Using Several Machine Learning Methods

被引:0
|
作者
Ma, Nigel [1 ]
机构
[1] German Swiss Int Sch, Hong Kong, Peoples R China
关键词
Team playoff prediction; Data analysis; Logistic Regression;
D O I
10.1109/MLBDBI54094.2021.00030
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data classification is a widespread application in the real world, which is also a critical task in machine learning, This paper will be using machine leaming methods to predict which NBA teams can make the playoffs by inputting their statistics into an algorithm. Data on how teams performed in the regular season will be collected and 6 machine learning models to perform a data classification task will then be implemented. Logistic Regression was the most accurate algorithm, producing a score of 0.922.
引用
收藏
页码:113 / 116
页数:4
相关论文
共 50 条
  • [41] Prediction of dihydrofolate reductase inhibitors activity using machine learning methods
    Chen Xiao-Mei
    Rao Han-Bing
    Huang Wen-Li
    Li Ze-Rong
    [J]. CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2007, 28 (11): : 2171 - 2178
  • [42] Performance Of Soil Prediction Using Machine Learning For Data Clustering Methods
    Rajeshwari, M.
    Shunmuganathan, N.
    Sankarasubramanian, R.
    [J]. JOURNAL OF ALGEBRAIC STATISTICS, 2022, 13 (02) : 825 - 831
  • [43] Prediction of shear strength of soft soil using machine learning methods
    Binh Thai Pham
    Le Hoang Son
    Tuan-Anh Hoang
    Duc-Manh Nguyen
    Dieu Tien Bui
    [J]. CATENA, 2018, 166 : 181 - 191
  • [44] Price Prediction of Seasonal Items Using Machine Learning and Statistical Methods
    Mohamed, Mohamed Ali
    El-Henawy, Ibrahim Mahmoud
    Salah, Ahmad
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (02): : 3473 - 3489
  • [45] In silico prediction of mitochondrial toxicity of chemicals using machine learning methods
    Zhao, Piaopiao
    Peng, Yayuan
    Xu, Xuan
    Wang, Zhiyuan
    Wu, Zengrui
    Li, Weihua
    Tang, Yun
    Liu, Guixia
    [J]. JOURNAL OF APPLIED TOXICOLOGY, 2021, 41 (10) : 1518 - 1526
  • [46] Risk estimation and risk prediction using machine-learning methods
    Kruppa, Jochen
    Ziegler, Andreas
    Koenig, Inke R.
    [J]. HUMAN GENETICS, 2012, 131 (10) : 1639 - 1654
  • [47] Soil microbial dynamics prediction using machine learning regression methods
    Jha, Sunil Kr.
    Ahmad, Zulfiqar
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2018, 147 : 158 - 165
  • [48] Using Machine Learning Methods and Structural Alerts for Prediction of Mitochondrial Toxicity
    Hemmerich, Jennifer
    Troger, Florentina
    Fuezi, Barbara
    Ecker, Gerhard F.
    [J]. MOLECULAR INFORMATICS, 2020, 39 (05)
  • [49] Computational prediction of RNA tertiary structures using machine learning methods
    黄斌
    杜渊洋
    张帅
    李文飞
    王骏
    张建
    [J]. Chinese Physics B, 2020, 29 (10) : 31 - 37
  • [50] Prediction of Type 2 Diabetes using Machine Learning Classification Methods
    Tigga, Neha Prerna
    Garg, Shruti
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND DATA SCIENCE, 2020, 167 : 706 - 716