Packing Element-Disjoint Steiner Trees

被引:21
|
作者
Cheriyan, Joseph [1 ]
Salavatipour, Mohammad R. [2 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[2] Univ Alberta, Dept Comp Sci, Edmonton, AB T6G 2E8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Packing; Steiner trees; element-disjoint; approximation algorithms; hardness of approximation;
D O I
10.1145/1290672.1290684
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given an undirected graph G(V, E) with terminal set T subset of V, the problem of packing element-disjoint Steiner trees is to find the maximum number of Steiner trees that are disjoint on the nonterminal nodes and on the edges. The problem is known to be NP-hard to approximate within a factor of Omega(log n), where n denotes vertical bar V vertical bar. We present a randomized O(log n)-approximation algorithm for this problem, thus matching the hardness lower bound. Moreover, we show a tight upper bound of O(log n) on the integrality ratio of a natural linear programming relaxation.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Constructing internally disjoint pendant Steiner trees in Cartesian product networks
    Mao, Yaping
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2018, 70 : 28 - 51
  • [32] Packing Steiner trees: A cutting plane algorithm and computational results
    Konrad-Zuse-Zentrum für Informationstechnik Berlin, Takustraße 7, Berlin, 14195, Germany
    Math Program Ser B, 2 (125-145):
  • [33] Packing Steiner trees: A cutting plane algorithm and computational results
    Grotschel, M
    Martin, A
    Weismantel, R
    MATHEMATICAL PROGRAMMING, 1996, 72 (02) : 125 - 145
  • [34] Routing vertex disjoint Steiner-trees in a cubic grid and connections to VLSI
    Recski, Andras
    Szeszler, David
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (01) : 44 - 52
  • [35] Minimum-cost node-disjoint Steiner trees in series-parallel networks
    Chopra, S
    Talluri, KT
    VLSI DESIGN, 1996, 4 (01) : 53 - 57
  • [36] On Extremal Graphs with at Most Two Internally Disjoint Steiner Trees Connecting Any Three Vertices
    Li, Hengzhe
    Li, Xueliang
    Mao, Yaping
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2014, 37 (03) : 747 - 756
  • [37] DISJOINT FINITE PARTIAL STEINER TRIPLE SYSTEMS CAN BE EMBEDDED IN DISJOINT FINITE STEINER TRIPLE SYSTEMS
    LINDNER, CC
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1975, 18 (01) : 126 - 129
  • [38] Packing Steiner forests
    Lau, LC
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2005, 3509 : 362 - 376
  • [39] Integrality ratio for Group Steiner Trees and Directed Steiner Trees
    Halperin, E
    Kortsarz, G
    Krauthgamer, R
    Srinivasan, A
    Nan, W
    PROCEEDINGS OF THE FOURTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2003, : 275 - 284
  • [40] INTEGRALITY RATIO FOR GROUP STEINER TREES AND DIRECTED STEINER TREES
    Halperin, Eran
    Kortsarz, Guy
    Krauthgamer, Robert
    Srinivasan, Aravind
    Wang, Nan
    SIAM JOURNAL ON COMPUTING, 2007, 36 (05) : 1494 - 1511