Bent Function Synthesis by Means of Cartesian Genetic Programming

被引:0
|
作者
Hrbacek, Radek [1 ]
Dvorak, Vaclav [1 ]
机构
[1] Brno Univ Technol, Fac Informat Technol, Brno 61266, Czech Republic
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a new approach to synthesize bent Boolean functions by means of Cartesian Genetic Programming (CGP) is proposed. Bent functions have important applications in cryptography due to their high nonlinearity. However, they are very rare and their discovery using conventional brute force methods is not efficient enough. We show that by using CGP we can routinely design bent functions of up to 16 variables. The evolutionary approach exploits parallelism in both the fitness calculation and the search algorithm.
引用
收藏
页码:414 / 423
页数:10
相关论文
共 50 条
  • [31] An Empirical Study on the Parametrization of Cartesian Genetic Programming
    Kaufmann, Paul
    Kalkreuth, Roman
    [J]. PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCO'17 COMPANION), 2017, : 231 - 232
  • [32] Self-Modifying Cartesian Genetic Programming
    Harding, Simon
    Miller, Julian F.
    Banzhaf, Wolfgang
    [J]. GECCO 2007: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2007, : 1021 - +
  • [33] Cartesian genetic programming: its status and future
    Miller, Julian Francis
    [J]. GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2020, 21 (1-2) : 129 - 168
  • [34] Improving Image Filters with Cartesian Genetic Programming
    Biau, Julien
    Wilson, Dennis
    Cussat-Blanc, Sylvain
    Luga, Herve
    [J]. PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL INTELLIGENCE (IJCCI), 2021, : 17 - 27
  • [35] FMCGP: frameshift mutation cartesian genetic programming
    Fang, Wei
    Gu, Mindan
    [J]. COMPLEX & INTELLIGENT SYSTEMS, 2021, 7 (03) : 1195 - 1206
  • [36] Cartesian genetic programming: its status and future
    Julian Francis Miller
    [J]. Genetic Programming and Evolvable Machines, 2020, 21 : 129 - 168
  • [37] Parametrizing Cartesian Genetic Programming: An Empirical Study
    Kaufmann, Paul
    Kalkreuth, Roman
    [J]. KI 2017: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2017, 10505 : 316 - 322
  • [38] Evofficient: Reproducing a Cartesian Genetic Programming Method
    Wendlinger, Lorenz
    Stier, Julian
    Granitzer, Michael
    [J]. GENETIC PROGRAMMING, EUROGP 2021, 2021, 12691 : 162 - 178
  • [39] Evolution and acquisition of modules in Cartesian Genetic Programming
    Walker, JA
    Miller, JF
    [J]. GENETIC PROGRAMMING, PROCEEDINGS, 2004, 3003 : 187 - 197
  • [40] Self Modifying Cartesian Genetic Programming: Parity
    Harding, S.
    Miller, J. F.
    Banzhaf, W.
    [J]. 2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5, 2009, : 285 - +