INSTRUMENTAL VARIABLE AND GMM ESTIMATION FOR PANEL DATA WITH MEASUREMENT ERROR

被引:0
|
作者
Xiao, Zhiguo [1 ]
Shao, Jun [2 ]
Palta, Mari [3 ]
机构
[1] Fudan Univ, Sch Management, Dept Stat, Shanghai 200433, Peoples R China
[2] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Populat Hlth Sci, Madison, WI 53726 USA
基金
美国国家科学基金会;
关键词
Equivalence; GMM; instrumental variable; measurement error; panel data; Tobin's q; IN-VARIABLES; MODELS; INVESTMENT;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Panel data allow correction for measurement error without assuming a known measurement error covariance matrix or using additional validation/replication data to estimate the measurement error covariance matrix. Griliches and Hausman (1986) proposed using the generalized method of moments (GMM) or optimal weighting to efficiently combine instrumental variable (IV) estimators. Wansbeek (2001) applied GMM based on moment conditions expressed in the form of the Kronecker product. This paper studies some issues crucial to applications of these two approaches, including the estimability of the regression parameter under Griliches and Hausman's or Wansbeek's approach, how to choose instruments, what is the optimally weighted IV estimator, how to explicitly construct GMM estimators, how to remove the redundancy of the moment conditions constructed by Wansbeek (2001), and the existence of optimal GMM estimators. We unify Griliches and Hausman's and Wansbeek's approaches by establishing their equivalence. We also consider models with exogenous regressors and models with non-classical assumptions. We apply the methods in this paper to revisit an investment controversy, viz., whether financially constrained firms respond to internal funds such as cash flow more sensitively than financially unconstrained firms.
引用
收藏
页码:1725 / 1747
页数:23
相关论文
共 50 条
  • [31] Two-stage instrumental variable estimation of linear panel data models with interactive effects
    Cui, Guowei
    Norkut, Milda
    Sarafidis, Vasilis
    Yamagata, Takashi
    [J]. ECONOMETRICS JOURNAL, 2022, 25 (02): : 340 - 361
  • [32] GMM estimation for high-dimensional panel data models
    Cheng, Tingting
    Dong, Chaohua
    Gao, Jiti
    Linton, Oliver
    [J]. JOURNAL OF ECONOMETRICS, 2024, 244 (01)
  • [33] GMM estimation of autoregressive roots near unity with panel data
    Moon, HR
    Phillips, PCB
    [J]. ECONOMETRICA, 2004, 72 (02) : 467 - 522
  • [34] INSTRUMENTAL VARIABLE ESTIMATION IN A DATA RICH ENVIRONMENT
    Bai, Jushan
    Ng, Serena
    [J]. ECONOMETRIC THEORY, 2010, 26 (06) : 1577 - 1606
  • [35] Instrumental variable estimation based on grouped data
    Bekker, PA
    Ploeg, J
    [J]. STATISTICA NEERLANDICA, 2005, 59 (03) : 239 - 267
  • [36] A double instrumental variable method for geophysical product error estimation
    Dong, Jianzhi
    Crow, Wade T.
    Duan, Zheng
    Wei, Lingna
    Lu, Yang
    [J]. REMOTE SENSING OF ENVIRONMENT, 2019, 225 : 217 - 228
  • [37] INSTRUMENTAL-VARIABLE ESTIMATION OF AN ERROR-COMPONENTS MODEL
    AMEMIYA, T
    MACURDY, TE
    [J]. ECONOMETRICA, 1986, 54 (04) : 869 - 880
  • [39] Instrumental variable estimation of heteroskedasticity adaptive error component models
    Eduardo Fé
    [J]. Statistical Papers, 2012, 53 : 577 - 615
  • [40] Identifiability of mean-reverting measurement error with instrumental variable
    Li, Qing
    [J]. STATISTICA NEERLANDICA, 2014, 68 (02) : 118 - 129