Action Recognition Using Ensemble Weighted Multi-Instance Learning

被引:0
|
作者
Chen, Guang [1 ]
Giuliani, Manuel [2 ]
Clarke, Daniel [2 ]
Gaschler, Andre [2 ]
Knoll, Alois [1 ]
机构
[1] Tech Univ Munich, Garching, Germany
[2] Fortiss GmbH, D-80805 Munich, Germany
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with recognizing human actions in depth video data. Current state-of-the-art action recognition methods use hand-designed features, which are difficult to produce and time-consuming to extend to new modalities. In this paper, we propose a novel, 3.5D representation of a depth video for action recognition. A 3.5D graph of the depth video consists of a set of nodes that are the joints of the human body. Each joint is represented by a set of spatio-temporal features, which are computed by an unsupervised learning approach. However, if occlusions occur, the 3D positions of the joints are noisy which increases the intra-class variations in action classes. To address this problem, we propose the Ensemble Weighted Multi-Instance Learning approach (EnwMi) for the action recognition task. It considers the class imbalance and intraclass variations. We formulate the action recognition task with depth videos as a weighted multi-instance problem. We further integrate an ensemble learning method into the weighted multi-instance learning framework. Our approach is evaluated on Microsoft Research Action3D dataset, and the results show that it outperforms state-of-the-art methods.
引用
收藏
页码:4520 / 4525
页数:6
相关论文
共 50 条
  • [31] Diversified dictionaries for multi-instance learning
    Qiao, Maoying
    Liu, Liu
    Yu, Jun
    Xu, Chang
    Tao, Dacheng
    PATTERN RECOGNITION, 2017, 64 : 407 - 416
  • [32] Multi-Instance Learning with Incremental Classes
    Wei X.
    Xu S.
    An P.
    Yang J.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2022, 59 (08): : 1723 - 1731
  • [33] Multi-instance clustering with applications to multi-instance prediction
    Min-Ling Zhang
    Zhi-Hua Zhou
    Applied Intelligence, 2009, 31 : 47 - 68
  • [34] Feature Selection in Multi-instance Learning
    Zhang, Chun-Hua
    Tan, Jun-Yan
    Deng, Nai-Yang
    OPERATIONS RESEARCH AND ITS APPLICATIONS, 2010, 12 : 462 - +
  • [35] Multi-instance clustering with applications to multi-instance prediction
    Zhang, Min-Ling
    Zhou, Zhi-Hua
    APPLIED INTELLIGENCE, 2009, 31 (01) : 47 - 68
  • [36] A review of multi-instance learning assumptions
    Foulds, James
    Frank, Eibe
    KNOWLEDGE ENGINEERING REVIEW, 2010, 25 (01): : 1 - 25
  • [37] Feature selection in multi-instance learning
    Gan, Rui
    Yin, Jian
    NEURAL COMPUTING & APPLICATIONS, 2013, 23 (3-4): : 907 - 912
  • [38] Constrained instance clustering in multi-instance multi-label learning
    Pei, Yuanli
    Fern, Xiaoli Z.
    PATTERN RECOGNITION LETTERS, 2014, 37 : 107 - 114
  • [39] Finger vein recognition based on multi-instance
    Yang, Ying
    Yang, Gongping
    Wang, Shibing
    International Journal of Digital Content Technology and its Applications, 2012, 6 (11) : 86 - 94
  • [40] Multi-Instance Deep Learning: Discover Discriminative Local Anatomies for Bodypart Recognition
    Yan, Zhennan
    Zhan, Yiqiang
    Peng, Zhigang
    Liao, Shu
    Shinagawa, Yoshihisa
    Zhang, Shaoting
    Metaxas, Dimitris N.
    Zhou, Xiang Sean
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) : 1332 - 1343