Regularized Submodular Maximization at Scale

被引:0
|
作者
Kazemi, Ehsan [1 ]
Minaee, Shervin [2 ]
Feldman, Moran [3 ]
Karbasi, Amin [4 ]
机构
[1] Google, Zurich, Switzerland
[2] Snap Inc, Santa Monica, CA USA
[3] Univ Haifa, Dept Comp Sci, Haifa, Israel
[4] Yale Univ, Yale Inst Network Sci, New Haven, CT USA
关键词
APPROXIMATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose scalable methods for maximizing a regularized submodular function f, expressed as the difference between a monotone submodular function g and a modular function f. Submodularity is related to the notions of diversity, coverage, and representativeness. In particular, finding the mode (most likely configuration) of many popular probabilistic models of diversity, such as determinantal point processes and strongly log-concave distributions, involves maximization of (regularized) submodular functions. Since a regularized function can potentially take on negative values, the classic theory of submodular maximization, which heavily relies on a non-negativity assumption, is not applicable. We avoid this issue by developing the first one-pass streaming algorithm for maximizing a regularized submodular function subject to a cardinality constraint. Furthermore, we give the first distributed algorithm that (roughly) reproduces the guarantees of state-of-the-art centralized algorithms for the problem using only O(1/epsilon) rounds of MapRe-duce. We highlight that our result, even for the unregularized case where the modular term I is zero, improves over the memory and communication complexity of the state-of-the-art by a factor of O(1/epsilon). We also empirically study the performance of our scalable methods on real-life applications, including finding the mode of negatively correlated distributions, vertex cover of social networks, and several data summarization tasks.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Improved Inapproximability for Submodular Maximization
    Austrin, Per
    APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, 2010, 6302 : 12 - 24
  • [22] The FAST Algorithm for Submodular Maximization
    Breuer, Adam
    Balkanski, Eric
    Singer, Yaron
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [23] Online Submodular Maximization with Preemption
    Buchbinder, Niv
    Feldman, Moran
    Schwartz, Roy
    ACM TRANSACTIONS ON ALGORITHMS, 2019, 15 (03)
  • [24] Horizontally Scalable Submodular Maximization
    Lucic, Mario
    Bachem, Olivier
    Zadimoghaddam, Morteza
    Krause, Andreas
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [25] Streaming adaptive submodular maximization*
    Tang, Shaojie
    Yuan, Jing
    THEORETICAL COMPUTER SCIENCE, 2023, 944
  • [26] The FAST Algorithm for Submodular Maximization
    Breuer, Adam
    Balkanski, Eric
    Singer, Yaron
    25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [27] On the Complexity of Dynamic Submodular Maximization
    Chen, Xi
    Peng, Binghui
    PROCEEDINGS OF THE 54TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '22), 2022, : 1685 - 1698
  • [28] Distributionally Robust Submodular Maximization
    Staib, Matthew
    Wilder, Bryan
    Jegelka, Stefanie
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89 : 506 - 516
  • [29] Maximization of Approximately Submodular Functions
    Horel, Thibaut
    Singer, Yaron
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [30] Practical Budgeted Submodular Maximization
    Feldman, Moran
    Nutov, Zeev
    Shoham, Elad
    ALGORITHMICA, 2023, 85 (05) : 1332 - 1371