Deep learning in digital pathology image analysis: a survey

被引:90
|
作者
Deng, Shujian [1 ,2 ,3 ,4 ]
Zhang, Xin [1 ,2 ,3 ,4 ]
Yan, Wen [1 ,2 ,3 ,4 ]
Chang, Eric I-Chao [5 ]
Fan, Yubo [1 ,2 ,3 ,4 ]
Lai, Maode [6 ]
Xu, Yan [1 ,2 ,3 ,4 ,5 ]
机构
[1] Beihang Univ, Sch Biol Sci & Med Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, Key Lab Biomech & Mechanobiol, Minist Educ, Beijing 100191, Peoples R China
[3] Beihang Univ, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
[4] Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Beijing 100191, Peoples R China
[5] Microsoft Res Asia, Beijing 100080, Peoples R China
[6] Zhejiang Univ, Sch Med, Dept Pathol, Hangzhou 310007, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
pathology; deep learning; segmentation; detection; classification; MITOSIS DETECTION; BREAST-CANCER; PROSTATE-CANCER; MALIGNANT MESOTHELIOMA; COLOR NORMALIZATION; STAIN NORMALIZATION; NUCLEI SEGMENTATION; PROGNOSTIC VALUE; LUNG-CANCER; HISTOPATHOLOGY;
D O I
10.1007/s11684-020-0782-9
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Deep learning (DL) has achieved state-of-the-art performance in many digital pathology analysis tasks. Traditional methods usually require hand-crafted domain-specific features, and DL methods can learn representations without manually designed features. In terms of feature extraction, DL approaches are less labor intensive compared with conventional machine learning methods. In this paper, we comprehensively summarize recent DL-based image analysis studies in histopathology, including different tasks (e.g., classification, semantic segmentation, detection, and instance segmentation) and various applications (e.g., stain normalization, cell/gland/region structure analysis). DL methods can provide consistent and accurate outcomes. DL is a promising tool to assist pathologists in clinical diagnosis.
引用
收藏
页码:470 / 487
页数:18
相关论文
共 50 条
  • [41] Deep Learning Method for Pathology Image Compression and Reconstruction
    Kubal, Pratik
    Doyle, Scott
    MODERN PATHOLOGY, 2020, 33 (SUPPL 2) : 1467 - 1468
  • [42] Deep Learning Method for Pathology Image Compression and Reconstruction
    Kubal, Pratik
    Doyle, Scott
    LABORATORY INVESTIGATION, 2020, 100 (SUPPL 1) : 1467 - 1468
  • [43] On the concept of objectivity in digital image analysis in pathology
    Tadrous, Paul J.
    PATHOLOGY, 2010, 42 (03) : 207 - 211
  • [44] Digital pathology and computational image analysis in nephropathology
    Barisoni, Laura
    Lafata, Kyle J.
    Hewitt, Stephen M.
    Madabhushi, Anant
    Balis, Ulysses G. J.
    NATURE REVIEWS NEPHROLOGY, 2020, 16 (11) : 669 - 685
  • [45] Digital pathology and computational image analysis in nephropathology
    Laura Barisoni
    Kyle J. Lafata
    Stephen M. Hewitt
    Anant Madabhushi
    Ulysses G. J. Balis
    Nature Reviews Nephrology, 2020, 16 : 669 - 685
  • [46] Developing image analysis methods for digital pathology
    Bankhead, Peter
    JOURNAL OF PATHOLOGY, 2022, 257 (04): : 391 - 402
  • [47] Digital image analysis in pathology: Benefits and obligation
    Laurinavicius, Arvydas
    Laurinaviciene, Aida
    Dasevicius, Darius
    Elie, Nicolas
    Plancoulaine, Benoit
    Bor, Catherine
    Herlin, Paulette
    ANALYTICAL CELLULAR PATHOLOGY, 2012, 35 (02) : 75 - 78
  • [48] Artificial intelligence in digital pathology image analysis
    Liu, Yi
    Liu, Xiaoyan
    Zhang, Hantao
    Liu, Junlin
    Shan, Chaofan
    Guo, Yinglu
    Gong, Xun
    Tang, Min
    FRONTIERS IN BIOINFORMATICS, 2023, 3
  • [49] Digital image watermarking using deep learning
    Himanshu Kumar Singh
    Amit Kumar Singh
    Multimedia Tools and Applications, 2024, 83 : 2979 - 2994
  • [50] Digital image watermarking using deep learning
    Singh, Himanshu Kumar
    Singh, Amit Kumar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (1) : 2979 - 2994