Control of chaotic oscillators via a class of model free active controller:: Suppresion and synchronization

被引:8
|
作者
Aguilar-Lopez, Ricardo [1 ]
Martinez-Guerra, Rafael [2 ]
机构
[1] Univ Autonoma Metropolitana Azcapotzalco, Div Ciencias Basicas & Ingn, Mexico City 02200, DF, Mexico
[2] IPN, Dept Automat Control, CINVESTAV, Mexico City 07360, DF, Mexico
关键词
D O I
10.1016/j.chaos.2006.11.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The goal of this work is related with the control of chaotic oscillators for chaos suppression and synchronization purposes. The proposed methodology is related with a class of robust active control (RAC) law, where the stabilizing part of the control structure is related with an integral high order sliding-mode and proportional form of the so-called control error. The proposed controller is applied to chaos suppression, synchronization and anti-synchronization tasks for nonlinear oscillators with different order and structure. Numerical experiments illustrate the satisfactory performance of the proposed methodology, when it is applied to Duffing and Chen oscillators. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:531 / 540
页数:10
相关论文
共 50 条
  • [21] Control and Synchronization of Fractional Unified Chaotic Systems via Active Control Technique
    Yuan Jian
    Shi Bao
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 1977 - 1982
  • [22] Control and synchronization for a class of new chaotic systems via linear feedback
    Zhang, Jianxiong
    Tang, Wansheng
    NONLINEAR DYNAMICS, 2009, 58 (04) : 675 - 686
  • [23] Projective synchronization of a class of delayed chaotic systems via impulsive control
    Cao, Jinde
    Ho, Daniel W. C.
    Yang, Yongqing
    PHYSICS LETTERS A, 2009, 373 (35) : 3128 - 3133
  • [24] Adaptive synchronization of a class of chaotic system via dynamic surface control
    Liu Tongshuan
    Guan Xinping
    Xu Hao
    Xu Yajie
    PROCEEDINGS OF THE 24TH CHINESE CONTROL CONFERENCE, VOLS 1 AND 2, 2005, : 144 - 147
  • [26] Synchronization of chaotic fractional-order systems via active sliding mode controller
    Tavazoei, Mohammad Saleh
    Haeri, Mohammad
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (01) : 57 - 70
  • [27] Generalized projective synchronization of chaotic systems via modified active control
    Li Zhen-Bo
    Zhao Xiao-Shan
    Wang Jing
    ACTA PHYSICA SINICA, 2011, 60 (05)
  • [28] Synchronization of uncertain chaotic systems with parameters perturbation via active control
    Zhang, H
    Ma, XK
    CHAOS SOLITONS & FRACTALS, 2004, 21 (01) : 39 - 47
  • [29] Routes to complete synchronization via phase synchronization in coupled nonidentical chaotic oscillators
    Rim, S
    Kim, I
    Kang, P
    Park, YJ
    Kim, CM
    PHYSICAL REVIEW E, 2002, 66 (01): : 1 - 015205
  • [30] Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme
    Diyi Chen
    Runfan Zhang
    Xiaoyi Ma
    Si Liu
    Nonlinear Dynamics, 2012, 69 : 35 - 55