Q-switched fiber laser based on CdS quantum dots as a saturable absorber

被引:27
|
作者
Radzi, N. M. [1 ]
Latif, A. A. [1 ]
Ismail, M. F. [2 ]
Liew, J. Y. C. [1 ,3 ]
Wang, E. [1 ]
Lee, H. K. [1 ]
Tamcheck, N. [1 ]
Awang, N. A. [4 ]
Ahmad, F. [5 ]
Halimah, M. K. [1 ]
Ahmad, H. [2 ]
机构
[1] Univ Putra Malaysia, Fac Sci, Dept Phys, Serdang 43400, Selangor, Malaysia
[2] Univ Malaya, Photon Res Ctr, Kuala Lumpur 50603, Malaysia
[3] Univ Putra Malaysia, Inst Adv Technol, Serdang 43400, Selangor, Malaysia
[4] Univ Tun Hussein Onn Malaysia, Fac Appl Sci & Technol, Dept Phys & Chem, Opt Fiber Laser Technol OpFLAT Focus Grp, Pagoh 84600, Johor, Malaysia
[5] Univ Teknol Malaysia, Malaysia Japan Int Inst Technol, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
关键词
GENERATION; GRAPHENE; SELENIDE; PULSES;
D O I
10.1016/j.rinp.2020.103123
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, a Q-switched fiber laser is demonstrated using quantum dots (QDs) cadmium sulfide (CdS) as a saturable absorber (SA) in an erbium-doped fiber laser (EDFL) system. The QD CdS is synthesized via the microwave hydrothermal assisted method and embedded into polyvinyl alcohol (PVA). The QD CdS/PVA matrix film is sandwiched in between two fiber ferrules by a fiber adapter. The generation of Q-switched fiber laser having a repetition rate, a pulse width, and a peak-to-peak pulse duration of 75.19 kHz, 1.27 mu s, and 13.32 mu s, respectively. The maximum output power of 3.82 mW and maximum pulse energy of 50.8 nJ are obtained at the maximum pump power of 145.9 mW. The proposed design may add to the alternative material of Q-switched fiber laser generation, which gives a high stability output performance by using quantum dots material as a saturable absorber.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] A Q-Switched Erbium-Doped Fiber Laser with a Carbon Nanotube Based Saturable Absorber
    Harun, S. W.
    Ismail, M. A.
    Ahmad, F.
    Ismail, M. F.
    Nor, R. M.
    Zulkepely, N. R.
    Ahmad, H.
    CHINESE PHYSICS LETTERS, 2012, 29 (11)
  • [22] A Q-switched fiber laser using a Ti2AlN-based saturable absorber
    Kwon, SuhYoung
    Lee, Jinho
    Lee, Ju Han
    LASER PHYSICS, 2021, 31 (02)
  • [23] Q-Switched Erbium-Doped Fiber Laser Based on Silver Nanoparticles as a Saturable Absorber
    Guo, Hao
    Feng, Ming
    Song, Feng
    Li, Haoyu
    Ren, Aibing
    Wei, Xukang
    Li, Yigang
    Xu, Xiaoxuan
    Tian, Jianguo
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2016, 28 (02) : 135 - 138
  • [24] Q-switched ytterbium-doped fiber laser with zinc oxide based saturable absorber
    Ahmad, H.
    Salim, M. A. M.
    Ismail, M. F.
    Harun, S. W.
    LASER PHYSICS, 2016, 26 (11)
  • [25] Passively Q-switched erbium-doped fiber laser based on antimonene as saturable absorber
    Hu, Ping
    Liu, Ying
    Guo, Liping
    Ge, Xiaolu
    Liu, Xiaojuan
    Yu, Lijun
    Liu, Qinghui
    APPLIED OPTICS, 2019, 58 (28) : 7845 - 7850
  • [26] Passively Q-switched fibre laser based on a saturable absorber of siloxane
    Pan, Honggang
    Zhang, Ailing
    Tong, Zhengrong
    Bai, Yangbo
    Guo, Qing
    LASER PHYSICS LETTERS, 2018, 15 (09)
  • [27] Q-Switched Raman Fiber Laser with Molybdenum Disulfide-Based Passive Saturable Absorber
    Hisamuddin, N.
    Zakaria, U. N.
    Zulkifli, M. Z.
    Latiff, A. A.
    Ahmad, H.
    Harun, S. W.
    CHINESE PHYSICS LETTERS, 2016, 33 (07)
  • [28] Q-Switched Raman Fiber Laser with Molybdenum Disulfide-Based Passive Saturable Absorber
    N.Hisamuddin
    U.N.Zakaria
    M.Z.Zulkifli
    A.A.Latiff
    H.Ahmad
    S.W.Harun
    Chinese Physics Letters, 2016, 33 (07) : 102 - 105
  • [29] Q-Switched Erbium-doped Fiber Laser Based on Silicon Nanosheets as Saturable Absorber
    Liu, Guowei
    Lyu, Yudong
    Li, Zongwen
    Wu, Tiange
    Yuan, Junjie
    Yue, Xifu
    Zhang, Huanian
    Zhang, Fang
    Fu, Shenggui
    OPTIK, 2020, 202
  • [30] Passively Q-switched erbium-doped fiber laser using quantum dots CdSe embedded in polymer film as saturable absorber
    Ismail, E. I.
    Kadir, N. A. A.
    Latiff, A. A.
    Arof, H.
    Harun, S. W.
    OPTICAL AND QUANTUM ELECTRONICS, 2019, 51 (06)