Qualitative and quantitative detection and identification of two benzodiazepines based on SERS and convolutional neural network technology

被引:14
|
作者
Sha, Xuanyu [1 ]
Fang, Guoqiang [1 ]
Cao, Guangxu [2 ]
Li, Shuzhi [3 ]
Hasi, Wuliji [1 ]
Han, Siqingaowa [3 ]
机构
[1] Harbin Inst Technol, Natl Key Lab Sci & Technol Tunable Laser, Harbin 150080, Peoples R China
[2] Harbin Inst Technol, Res Ctr Space Control & Inertial Technol, Harbin 150080, Peoples R China
[3] Inner Mongolia Univ Nationalities, Affiliated Hosp, Tongliao 028043, Peoples R China
基金
中国国家自然科学基金;
关键词
NANOPARTICLES; BIOSENSORS;
D O I
10.1039/d2an01277d
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Drug abuse is a global social issue of concern. As the drug market expands, there is an urgent need for technological methods to rapidly detect drug abuse to meet the needs of different situations. Here, we present a strategy for the rapid identification of benzodiazepines (midazolam and diazepam) using surface-enhanced Raman scattering (SERS) combined with neural networks (CNN). The method uses a self-assembled silver nanoparticle paper-based SERS substrate for detection. Then, a SERS spectrum intelligent recognition model based on deep learning technology was constructed to realize the rapid and sensitive distinction between the two drugs. In this work, a total of 560 SERS spectra were collected, and the qualitative and quantitative identification of the two drugs in water and a beverage (Sprite) was realized by a trained convolutional neural network (CNN). The predicted concentrations for each scenario could reach 0.1-50 ppm (midazolam in water), 0.5-50 ppm (midazolam in water and diazepam in Sprite), and 5-150 ppm (diazepam in Sprite), with a strong coefficient of determination (R-2) larger than 0.9662. The advantage of this method is that the neural network can extract data features from the entire SERS spectrum, which makes up for information loss when manually identifying the spectrum and selecting a limited number of characteristic peaks. This work clearly clarifies that the combination of SERS and deep learning technology has become an inevitable development trend, and also demonstrates the great potential of this strategy in the practical application of SERS.
引用
收藏
页码:5785 / 5795
页数:11
相关论文
共 50 条
  • [31] Two-View Fusion based Convolutional Neural Network for Urban Road Detection
    Gu, Shuo
    Zhang, Yigong
    Yang, Jian
    Alvarez, Jose M.
    Kong, Hui
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 6144 - 6149
  • [32] Video Flame Detection Method Based on Two-Stream Convolutional Neural Network
    Yu, Naigong
    Chen, Yue
    PROCEEDINGS OF 2019 IEEE 8TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC 2019), 2019, : 482 - 486
  • [33] Convolutional Neural Network based SMS Spam Detection
    Popovac, Milivoje
    Karanovic, Mirjana
    Sladojevic, Srdjan
    Arsenovic, Marko
    Anderla, Andras
    2018 26TH TELECOMMUNICATIONS FORUM (TELFOR), 2018, : 807 - 810
  • [34] Cyberbullying Detection with a Pronunciation Based Convolutional Neural Network
    Zhang, Xiang
    Tong, Jonathan
    Vishwamitra, Nishant
    Whittaker, Elizabeth
    Mazer, Joseph P.
    Kowalski, Robin
    Hu, Hongxin
    Luo, Feng
    Macbeth, Jamie
    Dillon, Edward
    2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), 2016, : 740 - 745
  • [35] An Intrusion Detection System Based on Convolutional Neural Network
    Liu, Pengju
    PROCEEDINGS OF 2019 11TH INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING (ICCAE 2019), 2019, : 62 - 67
  • [36] A Surface Defect Detection Based on Convolutional Neural Network
    Wu, Xiaojun
    Cao, Kai
    Gu, Xiaodong
    COMPUTER VISION SYSTEMS, ICVS 2017, 2017, 10528 : 185 - 194
  • [37] Glaucoma Detection based on Deep Convolutional Neural Network
    Chen, Xiangyu
    Xu, Yanwu
    Wong, Damon Wing Kee
    Wong, Tien Yin
    Liu, Jiang
    2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 715 - 718
  • [38] Quantitative Analysis of Immunochromatographic Strip Based on Convolutional Neural Network
    Zeng, Nianyin
    Li, Han
    Li, Yurong
    Luo, Xin
    IEEE ACCESS, 2019, 7 : 16257 - 16263
  • [39] Kidney Diseases Detection Based on Convolutional Neural Network
    Rui, Qin
    Sinuo, Liu
    Toe, Teoh Teik
    Brister, Brian
    2023 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION, ICAIIC, 2023, : 508 - 513
  • [40] A Review of Object Detection Based on Convolutional Neural Network
    Wang Zhiqiang
    Liu Jun
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 11104 - 11109