Nonrigid embeddings for dimensionality reduction

被引:0
|
作者
Brand, M [1 ]
机构
[1] Mitsubishi Elect Res Labs, Cambridge, MA USA
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
=Spectral methods for embedding graphs and immersing data manifolds in low-dimensional spaces are notoriously unstable due to insufficient and/or numerically ill-conditioned constraint sets. Why show why this is endemic to spectral methods, and develop low-complexity solutions for stiffening ill-conditioned problems and regularizing ill-posed problems, with proofs of correctness. The regularization exploits sparse but complementary constraints on affine rigidity and edge lengths to obtain isometric embeddings. An implemented algorithm is fast, accurate, and industrial-strength: Experiments with problem sizes spanning four orders of magnitude show O(N) scaling. We demonstrate with speech data.
引用
收藏
页码:47 / 59
页数:13
相关论文
共 50 条
  • [31] Dimensionality reduction under scrutiny
    Yang, Yang
    Tuong, Zewen K.
    Yu, Di
    NATURE COMPUTATIONAL SCIENCE, 2023, 3 (01): : 8 - 9
  • [32] Dimensionality reduction for image retrieval
    Wu, P
    Manjunath, BS
    Shin, HD
    2000 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2000, : 726 - 729
  • [33] Discriminative Unsupervised Dimensionality Reduction
    Wang, Xiaoqian
    Liu, Yun
    Nie, Feiping
    Huang, Heng
    PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 3925 - 3931
  • [34] Limitations on Quantum Dimensionality Reduction
    Harrow, Aram W.
    Montanaro, Ashley
    Short, Anthony J.
    AUTOMATA, LANGUAGES AND PROGRAMMING, ICALP, PT I, 2011, 6755 : 86 - 97
  • [35] Dimensionality reduction under scrutiny
    Yang Yang
    Zewen K. Tuong
    Di Yu
    Nature Computational Science, 2023, 3 : 8 - 9
  • [36] Quantum resonant dimensionality reduction
    Yang, Fan
    Wang, Furong
    Xu, Xusheng
    Gao, Pan
    Xin, Tao
    Wei, Shijie
    Long, Guilu
    PHYSICAL REVIEW RESEARCH, 2025, 7 (01):
  • [37] Nonlinear dimensionality reduction for clustering
    Tasoulis, Sotiris
    Pavlidis, Nicos G.
    Roos, Teemu
    PATTERN RECOGNITION, 2020, 107 (107)
  • [38] Comparing Dimensionality Reduction Techniques
    Nick, William
    Shelton, Joseph
    Bullock, Gina
    Esterline, Albert
    Asamene, Kassahun
    IEEE SOUTHEASTCON 2015, 2015,
  • [39] Robust linear dimensionality reduction
    Koren, Y
    Carmel, L
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2004, 10 (04) : 459 - 470
  • [40] Local Explanation of Dimensionality Reduction
    Bardos, Avraam
    Mollas, Ioannis
    Bassiliades, Nick
    Tsoumakas, Grigorios
    PROCEEDINGS OF THE 12TH HELLENIC CONFERENCE ON ARTIFICIAL INTELLIGENCE, SETN 2022, 2022,