Formation of lipid bilayers on the pore walls of macroporous silicon

被引:3
|
作者
Leon, X. [1 ]
Gennaro, A. M. [2 ,3 ]
Rodi, P. M. [3 ]
Forzani, L. [2 ]
Pacio, M. [1 ]
Juarez, H. [1 ]
Osorio, E. [2 ,4 ]
Koropecki, R. R. [2 ]
机构
[1] Univ Autonoma Puebla, Ctr Invest Dispositivos Semiconductores, CIDS ICUAP, 14 Sur & Av San Claudio, Puebla 72570, Mexico
[2] IFIS Litoral CONICET UNL, Guemes 3450, RA-3000 Santa Fe, Argentina
[3] Univ Nacl Litoral, Dept Fis, Fac Bioquim & Cs Biol, Ciudad Univ, RA-3000 Santa Fe, Argentina
[4] Univ Quintana Roo, CONACYT, Blvd Bahia S-N Esq Ignacio Comonft Col Bosque, Chetmal 77019, Quintana Roo, Mexico
关键词
Porous silicon; Electron paramagnetic resonance/electron spin resonance; Spin labels; Supported lipid bilayers; Liposomes; POROUS SILICON; HYDROGEN; PLATFORM; SI;
D O I
10.1016/j.tsf.2019.01.019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electron paramagnetic resonance (EPR) spectroscopy was used to study the pore filling of macroporous silicon with lipid vesicles (liposomes), added with a spin label. Different EPR spectra were obtained with the magnetic field parallel and perpendicular to the macroporous silicon sample surface. These spectra could be well simulated with an admixture of the isotropic spectrum of liposomes, plus a simulated spectrum corresponding to a cylindrical distribution of lipid bilayers. This means that a portion of the liposomes were disrupted, and supported lipid bilayers were formed covering the inner surface of the pores. Diverse protocols can be explored in order to optimize the lipid covering of the pore walls, and to achieve an adequate lipid hydration. This system can be used as a platform to study lipid phase transitions in a confined environment, and to characterize membrane proteins.
引用
收藏
页码:120 / 125
页数:6
相关论文
共 50 条
  • [41] Pore formation in phospholipid bilayers by amphiphilic cavitands
    Elidrisi, Iman
    Negin, Saeedeh
    Bhatt, Pralav V.
    Govender, Thavendran
    Kruger, Hendrick G.
    Gokel, George W.
    Maguire, Glenn E. M.
    ORGANIC & BIOMOLECULAR CHEMISTRY, 2011, 9 (12) : 4498 - 4506
  • [42] Pore Spanning Lipid Bilayers on Mesoporous Silica Having Varying Pore Size
    Claesson, Maria
    Frost, Rickard
    Svedhem, Sofia
    Andersson, Martin
    LANGMUIR, 2011, 27 (14) : 8974 - 8982
  • [43] Effect of lipid raft formation on the stability of lipid bilayers
    Mayfield, J
    Hovis, J
    BIOPHYSICAL JOURNAL, 2004, 86 (01) : 201A - 201A
  • [44] PORE FORMATION BY PHO-CONTROLLED OUTER-MEMBRANE PROTEINS OF VARIOUS ENTEROBACTERIACEAE IN LIPID BILAYERS
    BAUER, K
    SCHMID, A
    BOOS, W
    BENZ, R
    TOMMASSEN, J
    EUROPEAN JOURNAL OF BIOCHEMISTRY, 1988, 174 (01): : 199 - 205
  • [45] Metal electrode integration on macroporous silicon: pore distribution and morphology
    Gilles Scheen
    Margherita Bassu
    Laurent A Francis
    Nanoscale Research Letters, 7
  • [46] Metal electrode integration on macroporous silicon: pore distribution and morphology
    Scheen, Gilles
    Bassu, Margherita
    Francis, Laurent A.
    NANOSCALE RESEARCH LETTERS, 2012, 7
  • [47] Effect of anodization current density on pore geometry in macroporous silicon
    Peckham, J.
    Andrews, G. T.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2013, 28 (10)
  • [48] An engineered dimeric protein pore that spans adjacent lipid bilayers
    Mantri, Shiksha
    Sapra, K. Tanuj
    Cheley, Stephen
    Sharp, Thomas H.
    Bayley, Hagan
    NATURE COMMUNICATIONS, 2013, 4
  • [49] Pore spanning lipid bilayers on silanised nanoporous alumina membranes
    Jani, Abdul Mutalib Md
    Zhou, Jinwen
    Nussio, Matthew R.
    Losic, Dusan
    Shapter, Joe G.
    Voelcker, Nicolas H.
    SMART MATERIALS V, 2008, 7267
  • [50] Modulating the phase separation in pore-spanning lipid bilayers
    Schuette, O. M.
    Orth, A.
    Ries, A.
    Werz, D. B.
    Steinem, C.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2013, 42 : S130 - S130