Microsphere Assisted Super-resolution Optical Imaging of Plasmonic Interaction between Gold Nanoparticles

被引:20
|
作者
Hou, Beibei [1 ,2 ]
Xie, Mengran [1 ,2 ]
He, Ruoyu [3 ,4 ]
Ji, Minbiao [3 ,4 ]
Trummer, Sonja [5 ,6 ]
Fink, Rainer H. [5 ,6 ]
Zhang, Luning [1 ,2 ]
机构
[1] Tongji Univ, Sch Chem Sci & Engn, Shanghai 200092, Peoples R China
[2] Tongji Univ, Shanghai Key Lab Chem Assessment & Sustainabil, Shanghai 200092, Peoples R China
[3] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[4] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
[5] Friedrich Alexander Univ Erlangen Nurnberg FAU, Phys Chem 2, ICMM, Egerlandstr 3, D-91058 Erlangen, Germany
[6] Friedrich Alexander Univ Erlangen Nurnberg FAU, CENEM, Egerlandstr 3, D-91058 Erlangen, Germany
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
中国国家自然科学基金;
关键词
MOVABLE THIN-FILMS; 2-PHOTON PHOTOLUMINESCENCE; MICROSCOPY; RESONANCE; FIELD; LUMINESCENCE; ENHANCEMENT; DNA; FLUORESCENCE; SPECTROSCOPY;
D O I
10.1038/s41598-017-14193-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Conventional far-field microscopy cannot directly resolve the sub-diffraction spatial distribution of localized surface plasmons in metal nanostructures. Using BaTiO3 microspheres as far-field superlenses by collecting the near-field signal, we can map the origin of enhanced two-photon photoluminescence signal from the gap region of gold nanosphere dimers and gold nanorod dimers beyond the diffraction limit, on a conventional far-field microscope. As the angle theta between dimer's structural axis and laser polarisation changes, photoluminescence intensity varies with a cos(4)theta function, which agrees quantitatively with numerical simulations. An optical resolution of about lambda/7 (lambda: two-photon luminescence central wavelength) is demonstrated at dimer's gap region.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Fluorescent Nanoparticles for Super-Resolution Imaging
    Li, Wei
    Schierle, Gabriele S. Kaminski
    Lei, Bingfu
    Liu, Yingliang
    Kaminski, Clemens F.
    CHEMICAL REVIEWS, 2022, : 12495 - 12543
  • [32] Nanoscale studies of plasmonic hot spots using super-resolution optical imaging
    Weber, Maggie L.
    Willets, Katherine A.
    MRS BULLETIN, 2012, 37 (08) : 745 - 751
  • [33] Nanoscale studies of plasmonic hot spots using super-resolution optical imaging
    Maggie L. Weber
    Katherine A. Willets
    MRS Bulletin, 2012, 37 : 745 - 751
  • [34] Scanning microsphere array optical microscope for efficient and large area super-resolution imaging
    Zhou, Ji
    Lian, Zhaoxin
    Zhou, Chengjia
    Bi, Shusheng
    Wang, Yuliang
    JOURNAL OF OPTICS, 2020, 22 (10)
  • [35] Microsphere optical microscopy for immersion-free super-resolution imaging of silicon chips
    Hrata, Zainab A.
    Rajab, Fatema H.
    Stanescu, Sorin L.
    OPTICS CONTINUUM, 2025, 4 (04): : 731 - 744
  • [36] Optical Super-Resolution Imaging Study Based on Controlling Liquid-Immersed Microsphere
    Meng, Kai
    Gao, Shilin
    Zhang, Yunlin
    Yang, Lei
    Chen, Tao
    Yang, Zhan
    Liu, Huicong
    Sun, Lining
    2018 13TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS (NEMS 2018), 2018, : 538 - 542
  • [37] Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy
    Li, Lin
    Guo, Wei
    Yan, Yinzhou
    Lee, Seoungjun
    Wang, Tao
    LIGHT-SCIENCE & APPLICATIONS, 2013, 2 : e104 - e104
  • [38] Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy
    Lin Li
    Wei Guo
    Yinzhou Yan
    Seoungjun Lee
    Tao Wang
    Light: Science & Applications, 2013, 2 : e104 - e104
  • [39] Super-resolution optical fluctuation imaging
    Basak, Samrat
    Chizhik, Alexey
    Gallea, Jose Ignacio
    Gligonov, Ivan
    Gregor, Ingo
    Nevskyi, Oleksii
    Radmacher, Niels
    Tsukanov, Roman
    Enderlein, Joerg
    NATURE PHOTONICS, 2025, 19 (03) : 229 - 237
  • [40] Super-resolution optical imaging: A comparison
    Huszka, Gergely
    Gijs, Martin A. M.
    MICRO AND NANO ENGINEERING, 2019, 2 : 7 - 28