Heat Transport Exploration for Hybrid Nanoparticle (Cu, Fe3O4)-Based Blood Flow via Tapered Complex Wavy Curved Channel with Slip Features

被引:144
|
作者
Abbasi, A. [1 ]
Farooq, W. [1 ]
Tag-ElDin, El Sayed Mohamed [2 ]
Khan, Sami Ullah [3 ]
Khan, M. Ijaz [4 ,5 ]
Guedri, Kamel [6 ,7 ]
Elattar, Samia [8 ]
Waqas, M. [9 ]
Galal, Ahmed M. [10 ,11 ]
机构
[1] Univ Azad Jammu & Kashmir Muzaffarabad, Dept Math, Muzaffarabad 13100, Pakistan
[2] Future Univ Egypt, Fac Engn & Technol, New Cairo 11835, Egypt
[3] COMSATS Univ Islamabad, Dept Math, Sahiwal 57000, Pakistan
[4] Riphah Int Univ I 14, Dept Math & Stat, Islamabad 44000, Pakistan
[5] Lebanese Amer Univ, Dept Mech Engn, Beirut 2100, Lebanon
[6] Umm Al Qura Univ, Coll Engn & Islamic Architecture, Mech Engn Dept, POB 5555, Mecca 21955, Saudi Arabia
[7] Univ Gafsa, Fac Sci Gafsa, Res Unity Mat Energy & Renewable Energies, Gafsa 2100, Tunisia
[8] Princess Nourah Bint Abdulrahman Univ, Coll Engn, Dept Ind & Syst Engn, POB 84428, Riyadh 11671, Saudi Arabia
[9] Natl Univ Technol, NUTECH Sch Appl Sci & Humanities, Islamabad 44000, Pakistan
[10] Prince Sattam Bin Abdulaziz Univ, Coll Engn, Mech Engn Dept, Wadi Addawaser 11991, Saudi Arabia
[11] Mansoura Univ, Fac Engn, Prod Engn & Mech Design Dept, Mansoura 35516, Egypt
关键词
Casson hybrid nanoparticles; peristaltic transport; slip effects; hall applications; numerical approach; MASS-TRANSFER; ACTIVATION-ENERGY; STRETCHING SHEET; NANOFLUID FLOW;
D O I
10.3390/mi13091415
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Curved veins and arteries make up the human cardiovascular system, and the peristalsis process underlies the blood flowing in these ducts. The blood flow in the presence of hybrid nanoparticles through a tapered complex wavy curved channel is numerically investigated. The behavior of the blood is characterized by the Casson fluid model while the physical properties of iron (Fe3O4) and copper (Cu) are used in the analysis. The fundamental laws of mass, momentum and energy give rise the system of nonlinear coupled partial differential equations which are normalized using the variables, and the resulting set of governing relations are simplified in view of a smaller Reynolds model approach. The numerical simulations are performed using the computational software Mathematica's built-in ND scheme. It is noted that the velocity of the blood is abated by the nanoparticles' concentration and assisted in the non-uniform channel core. Furthermore, the nanoparticles' volume fraction and the dimensionless curvature of the channel reduce the temperature profile.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Series solution of slip flow of Al2O3 and Fe3O4 nanoparticles in a horizontal channel with a porous medium by using least square and Galerkin methods
    Abbas, Z.
    Hasnain, J.
    Aqeel, M.
    Mustafa, I.
    Ghaffari, A.
    SCIENTIA IRANICA, 2020, 27 (05) : 2465 - 2477
  • [22] Effect of NP shapes on Fe3O4 - Ag/kerosene and Fe3O4 - Ag/water hybrid nanofluid flow in suction/injection process with nonlinear-thermal-radiation and slip condition; Hamilton and Crosser's model
    Soumya, D. O.
    Gireesha, B. J.
    Venkatesh, P.
    Alsulami, M. D.
    WAVES IN RANDOM AND COMPLEX MEDIA, 2022,
  • [23] Numerically simulated behavior of radiative Fe3O4 and multi-walled carbon nanotube hybrid nanoparticle flow in presence of Lorentz force
    Shehzad, S.A.
    Sheikholeslami, M.
    Ambreen, T.
    Saleem, A.
    Shafee, A.
    Applied Mathematics and Mechanics (English Edition), 2021, 42 (03): : 347 - 356
  • [24] Numerically simulated behavior of radiative Fe3O4 and multi-walled carbon nanotube hybrid nanoparticle flow in presence of Lorentz force
    Shehzad, S. A.
    Sheikholeslami, M.
    Ambreen, T.
    Saleem, A.
    Shafee, A.
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2021, 42 (03) : 347 - 356
  • [25] Numerically simulated behavior of radiative Fe3O4 and multi-walled carbon nanotube hybrid nanoparticle flow in presence of Lorentz force
    S. A. Shehzad
    M. Sheikholeslami
    T. Ambreen
    A. Saleem
    A. Shafee
    Applied Mathematics and Mechanics, 2021, 42 : 347 - 356
  • [26] Numerically simulated behavior of radiative Fe3O4 and multi-walled carbon nanotube hybrid nanoparticle flow in presence of Lorentz force
    S.A.SHEHZAD
    M.SHEIKHOLESLAMI
    T.AMBREEN
    A.SALEEM
    A.SHAFEE
    AppliedMathematicsandMechanics(EnglishEdition), 2021, 42 (03) : 347 - 356
  • [27] Magnetic field induced electrochemical performance enhancement in reduced graphene oxide anchored Fe3O4 nanoparticle hybrid based supercapacitor
    Pal, Shreyasi
    Majumder, Sumit
    Dutta, Shibsankar
    Banerjee, Sangam
    Satpati, Biswarup
    De, Sukanta
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (37)
  • [28] Effects of Second-Order Slip Flow and Variable Viscosity on Natural Convection Flow of (CNTs - Fe3O4)/Water Hybrid Nanofluids due to Stretching Surface
    Tulu, Ayele
    Ibrahim, Wubshet
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [29] Experimental investigation into heat transfer and flow characteristics of magnetic hybrid nanofluid (Fe3O4/TiO2) in turbulent region
    Adogbeji, Victor O.
    Sharifpur, Mohsen
    Meyer, Josua P.
    APPLIED THERMAL ENGINEERING, 2025, 258
  • [30] Bio-magnetic pulsatile CuO- Fe3O4 hybrid nanofluid flow in a vertical irregular channel in a suspension of body acceleration
    Reddy, S. R. R.
    Raju, C. S. K.
    Gunakala, Sreedhara Rao
    Basha, H. Thameem
    Yook, Se-Jin
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2022, 135