Uncertainty relations for joint measurements of noncommuting observables

被引:84
|
作者
Ozawa, M [1 ]
机构
[1] Tohoku Univ, Grad Sch Informat Sci, Aoba Ku, Sendai, Miyagi 9808579, Japan
关键词
Heisenberg; uncertainty relation; uncertainty principle; joint measurements; noise; positive operator-valued measures;
D O I
10.1016/j.physleta.2003.12.001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Universally valid uncertainty relations are proven in a model independent formulation for inherent and unavoidable extra noises in arbitrary joint measurements on single systems, from which Heisenberg's original uncertainty relation is proven valid for any joint measurements with statistically independent noises. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:367 / 374
页数:8
相关论文
共 50 条
  • [31] Perfect correlations between noncommuting observables
    Ozawa, M
    PHYSICS LETTERS A, 2005, 335 (01) : 11 - 19
  • [32] Joint measurements on qubits and cloning of observables
    Ferraro, Alessandro
    Paris, Matteo G. A.
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2007, 14 (02): : 149 - 157
  • [33] Approximate joint measurements of qubit observables
    Busch, Paul
    Heinosaari, Teiko
    QUANTUM INFORMATION & COMPUTATION, 2008, 8 (8-9) : 797 - 818
  • [34] NONCOMMUTING OBSERVABLES IN QUANTUM DETECTION AND ESTIMATION THEORY
    HELSTROM, CW
    KENNEDY, RS
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1974, 20 (01) : 16 - 24
  • [35] UNCERTAINTY RELATIONS FOR REALISTIC JOINT MEASUREMENTS OF POSITION AND MOMENTUM IN QUANTUM OPTICS
    LEONHARDT, U
    BOHMER, B
    PAUL, H
    OPTICS COMMUNICATIONS, 1995, 119 (3-4) : 296 - 300
  • [36] Experimental investigation of joint measurement uncertainty relations for three incompatible observables at a single-spin level
    Rehan, K.
    Xiong, T. P.
    Yan, L-L
    Zhou, F.
    Zhang, J. W.
    Li, J. C.
    Chen, L.
    Yang, W. L.
    Feng, M.
    OPTICS EXPRESS, 2020, 28 (18): : 25949 - 25968
  • [37] Sum uncertainty relations for arbitrary N incompatible observables
    Bin Chen
    Shao-Ming Fei
    Scientific Reports, 5
  • [38] Single-photon observables and preparation uncertainty relations
    Guarnieri, G.
    Motta, M.
    Lanz, L.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (26)
  • [39] Variance-based uncertainty relations for incompatible observables
    Chen, Bin
    Cao, Ning-Ping
    Fei, Shao-Ming
    Long, Gui-Lu
    QUANTUM INFORMATION PROCESSING, 2016, 15 (09) : 3909 - 3917
  • [40] Sum uncertainty relations for arbitrary N incompatible observables
    Chen, Bin
    Fei, Shao-Ming
    SCIENTIFIC REPORTS, 2015, 5