Bloch space;
Bounded mean oscillation;
Dirichlet-type Space;
Duality;
Hardy space;
Hardy-Littlewood space;
Integral operator;
ANALYTIC-FUNCTIONS;
BERGMAN SPACES;
HARDY;
INEQUALITY;
DUALITY;
D O I:
10.1007/s12220-022-00888-1
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
For analytic functions g on the unit disk with non-negative Maclaurin coefficients, we describe the boundedness and compactness of the integral operator T-g(f)(z) = integral(z)(0) f (zeta)g'(zeta) d zeta from a space X of analytic functions in the unit disk to H-infinity, in terms of neat and useful conditions on the Maclaurin coefficients of g. The choices of X that will be considered contain the Hardy and the Hardy-Littlewood spaces, the Dirichlet-type spaces D-p-1(p), as well as the classical Bloch and BMOA spaces.
机构:
Univ Nacl Autonoma Mexico, Area Invest Cient, Circuito Exterior, Inst Matemat, Ciudad Univ, Mexico City 04510, DF, MexicoUniv Nacl Autonoma Mexico, Area Invest Cient, Circuito Exterior, Inst Matemat, Ciudad Univ, Mexico City 04510, DF, Mexico