共 50 条
Porous Silica-Pillared MXenes with Controllable Interlayer Distances for Long-Life Na-Ion Batteries
被引:43
|作者:
Maughan, Philip A.
[1
]
Seymour, Valerie R.
[2
]
Bernardo-Gavito, Ramon
[3
]
Kelly, Daniel J.
[4
]
Shao, Shouqi
[4
]
Tantisriyanurak, Supakorn
[5
]
Dawson, Robert
[5
]
Haigh, Sarah J.
[4
]
Young, Robert J.
[3
]
Tapia-Ruiz, Nuria
[2
]
Bimbo, Nuno
[1
]
机构:
[1] Univ Lancaster, Dept Engn, Lancaster LA1 4YW, England
[2] Univ Lancaster, Dept Chem, Lancaster LA1 4YB, England
[3] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England
[4] Univ Manchester, Sch Mat, Manchester M13 9PL, Lancs, England
[5] Univ Sheffield, Dept Chem, Sheffield S3 7HF, S Yorkshire, England
来源:
基金:
英国工程与自然科学研究理事会;
欧洲研究理事会;
关键词:
2-DIMENSIONAL TITANIUM CARBIDE;
TI3C2;
MXENE;
ENERGY-STORAGE;
GRAPHITE OXIDE;
INTERCALATION;
CAPACITANCE;
MECHANISM;
GRAPHENE;
REDUCTION;
ANODE;
D O I:
10.1021/acs.langmuir.0c00462
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
MXenes are a recently discovered class of two-dimensional materials that have shown great potential as electrodes in electrochemical energy storage devices. Despite their promise in this area, MXenes can still suffer limitations in the form of restricted ion accessibility between the closely spaced multistacked MXene layers causing low capacities and poor cycle life. Pillaring, where a secondary species is inserted between layers, has been used to increase interlayer spacings in clays with great success but has had limited application in MXenes. We report a new amine-assisted pillaring methodology that successfully intercalates silica-based pillars between Ti3C2 layers. Using this technique, the interlayer spacing can be controlled with the choice of amine and calcination temperature, up to a maximum of 3.2 nm, the largest interlayer spacing reported for an MXene. Another effect of the pillaring is a dramatic increase in surface area, achieving BET surface areas of 235 m2 g(-1), a sixty-fold increase over the unpillared material and the highest reported for MXenes using an intercalation-based method. The intercalation mechanism was revealed by different characterization techniques, allowing the surface chemistry to be optimized for the pillaring process. The porous MXene was tested for Na-ion battery applications and showed superior capacity, rate capability and remarkable stability compared with those of the nonpillared materials, retaining 98.5% capacity between the 50th and 100th cycles. These results demonstrate the applicability and promise of pillaring techniques applied to MXenes providing a new approach to optimizing their properties for a range of applications, including energy storage, conversion, catalysis, and gas separations.
引用
收藏
页码:4370 / 4382
页数:13
相关论文