SINGULAR BEHAVIOR OF THE SOLUTION OF THE PERIODIC DIRICHLET HEAT EQUATION IN WEIGHTED Lp-SOBOLEV SPACES

被引:0
|
作者
De Coster, Colette [1 ]
Nicaise, Serge [1 ]
机构
[1] Univ Valenciennes & Hainaut Cambresis, LAMAV, FR CNRS 2956, Inst Sci & Tech Valenciennes, F-59313 Valenciennes 9, France
关键词
ELLIPTIC PROBLEMS; OPERATORS; SUM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the heat equation in a polygonal domain Omega of the plane in weighted L-p-Sobolev spaces partial derivative(t)u - Delta u = h, in Omega x (-pi, pi), u = 0, on partial derivative Omega x [-pi, pi], u(., -pi) = u(., pi), in Omega. Here h belongs to L-p (-pi, pi; L-mu(p)(Omega)), where L-mu(p)(Omega) = {v is an element of L-loc(p)(Omega) : r(mu)v is an element of L-p(Omega)}, with a real parameter mu and r(x) the distance from x to the set of corners of Omega. We give sufficient conditions on mu, p, and Omega that guarantee that problem (0.1) has a unique solution u is an element of L-p(-pi, pi; L-mu(p)(Omega)) that admits a decomposition into a regular part in weighted L-p-Sobolev spaces and an explicit singular part. The classical Fourier transform techniques do not allow one to handle such a general case. Hence we use the theory of sums of operators.
引用
收藏
页码:221 / 256
页数:36
相关论文
共 50 条
  • [41] Nonhomogeneous Dirichlet Navier—Stokes Problems in Low Regularity Lp Sobolev Spaces
    G. Grubb
    [J]. Journal of Mathematical Fluid Mechanics, 2001, 3 : 57 - 81
  • [42] Benjamin-Ono equation in weighted sobolev spaces
    Iorio, Rafael Jose Jr.
    [J]. Journal of Mathematical Analysis and Applications, 1991, 157 (02)
  • [43] Isotropically and Anisotropically Weighted Sobolev Spaces for the Oseen Equation
    Amrouche, Cherif
    Razafison, Ulrich
    [J]. ADVANCES IN MATHEMATICAL FLUID MECHANICS: DEDICATED TO GIOVANNI PAOLO GALDI ON THE OCCASION OF HIS 60TH BIRTHDAY, INTERNATIONAL CONFERENCE ON MATHEMATICAL FLUID MECHANICS, 2007, 2010, : 1 - +
  • [44] Dirichlet Problem for Elliptic Equations in Weighted Sobolev Spaces on Unbounded Domains
    Monsurro, Sara
    Transirico, Maria
    [J]. AZERBAIJAN JOURNAL OF MATHEMATICS, 2014, 4 (01): : 79 - 91
  • [45] Composition Operators on Weighted Sobolev Spaces and the Theory of Lp-Homeomorphisms
    Vodopyanov, S. K.
    [J]. DOKLADY MATHEMATICS, 2020, 102 (02) : 371 - 375
  • [46] Singular behavior of the solution to the stochastic heat equation on a polygonal domain
    Lindner F.
    [J]. Stochastic Partial Differential Equations: Analysis and Computations, 2014, 2 (2) : 146 - 195
  • [47] HEAT-EQUATION ON SINGULAR SPACES
    ALAOUI, AEK
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1986, 303 (06): : 243 - 246
  • [48] WEAK SOLUTION FOR NONLINEAR DEGENERATE ELLIPTIC PROBLEM WITH DIRICHLET-TYPE BOUNDARY CONDITION IN WEIGHTED SOBOLEV SPACES
    Sabri, Abdelali
    Jamea, Ahmed
    Alaoui, Hamad Talibi
    Jadida, El
    [J]. MATHEMATICA BOHEMICA, 2022, 147 (01): : 113 - 129
  • [49] ENTROPY SOLUTION FOR A NONLINEAR DEGENERATE ELLIPTIC PROBLEM WITH DIRICHLET-TYPE BOUNDARY CONDITION IN WEIGHTED SOBOLEV SPACES
    Sabri, A.
    Jamea, A.
    Alaoui, H. T.
    [J]. MATEMATICHE, 2021, 76 (01): : 109 - 131
  • [50] Regularity in Lp Sobolev spaces of solutions to fractional heat equations
    Grubb, Gerd
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (09) : 2634 - 2660