Inapproximability results for constrained approximate Nash equilibria

被引:7
|
作者
Deligkas, Argyrios [1 ]
Fearnley, John [2 ]
Savani, Rahul [2 ]
机构
[1] Technion Israel Inst Technol, Fac Ind Engn & Management, Haifa, Israel
[2] Univ Liverpool, Dept Comp Sci, Liverpool L69 3BX, Merseyside, England
基金
英国工程与自然科学研究理事会;
关键词
Approximate Nash equilibrium; Constrained equilibrium; Quasi-polynomial time; Lower bound; Exponential time hypothesis; COMPLEXITY;
D O I
10.1016/j.ic.2018.06.001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the problem of finding approximate Nash equilibria that satisfy certain conditions, such as providing good social welfare. In particular, we study the problem epsilon-NE delta-SW: find an epsilon-approximate Nash equilibrium (epsilon-NE) that is within delta of the best social welfare achievable by an epsilon-NE. Our main result is that, delta the exponential-time hypothesis (ETH) is true, then solving (1/8-O(delta))-NE O(delta)-SW for an n x n bimatrix game requires n((Omega) over tilde 'log) (n') time. Building on this result, we show similar conditional running time lower bounds for a number of other decision problems for epsilon-NE, where, for example, the payoffs or supports of players are constrained. We show quasi-polynomial lower bounds for these problems assuming ETH, where these lower bounds apply to epsilon-Nash equilibria for all epsilon<1/8. The hardness of these other decision problems has so far only been studied in the context of exact equilibria. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:40 / 56
页数:17
相关论文
共 50 条
  • [21] Inapproximability of Nash Equilibrium
    Rubinstein, Aviad
    [J]. STOC'15: PROCEEDINGS OF THE 2015 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2015, : 409 - 418
  • [22] Multi-player approximate Nash equilibria
    Czumaj, Artur
    Fasoulakis, Michail
    Jurdzinski, Marcin
    [J]. AAMAS'17: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2017, : 1511 - 1513
  • [23] Lower semicontinuity for approximate social Nash equilibria
    Jacqueline Morgan
    Roberto Raucci
    [J]. International Journal of Game Theory, 2003, 31 : 499 - 509
  • [24] Convergence to approximate Nash equilibria in congestion games
    Chien, Steve
    Sinclair, Alistair
    [J]. GAMES AND ECONOMIC BEHAVIOR, 2011, 71 (02) : 315 - 327
  • [25] Convergence to Approximate Nash Equilibria in Congestion Games
    Chien, Steve
    Sinclair, Alistair
    [J]. PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2007, : 169 - 178
  • [26] Lower semicontinuity for approximate social Nash equilibria
    Morgan, J
    Raucci, R
    [J]. INTERNATIONAL JOURNAL OF GAME THEORY, 2003, 31 (04) : 499 - 509
  • [27] Computing Approximate Nash Equilibria in Polymatrix Games
    Deligkas, Argyrios
    Fearnley, John
    Savani, Rahul
    Spirakis, Paul
    [J]. ALGORITHMICA, 2017, 77 (02) : 487 - 514
  • [28] Computing Approximate Nash Equilibria in Polymatrix Games
    Deligkas, Argyrios
    Fearnley, John
    Savani, Rahul
    Spirakis, Paul
    [J]. WEB AND INTERNET ECONOMICS, 2014, 8877 : 58 - 71
  • [29] Small Clique Detection and Approximate Nash Equilibria
    Minder, Lorenz
    Vilenchik, Dan
    [J]. APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, 2009, 5687 : 673 - 685
  • [30] THE COMPUTATION OF APPROXIMATE GENERALIZED FEEDBACK NASH EQUILIBRIA
    Laine, Forrest
    Fridovich-Keil, David
    Chiu, Chih-Yuan
    Tomlin, Claire
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2023, 33 (01) : 294 - 318