A connection between the number of subgroups and the order of a finite group

被引:1
|
作者
Lazorec, Mihai-Silviu [1 ]
机构
[1] Alexandru Ioan Cuza Univ, Fac Math, Iasi, Romania
关键词
Subgroup lattice; number of subgroups; finite (abelian) p-groups;
D O I
10.1142/S0219498822500013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a finite group G, we associate the quantity beta(G) = vertical bar L(G)vertical bar/vertical bar G vertical bar, where L(G) is the subgroup lattice of G. Different properties and problems related to this ratio are studied throughout this paper. We determine the second minimum value of beta on the class of p-groups of order p(n), where n >= 3 is an integer. We show that the set containing the quantities beta(G), where G is a finite (abelian) group, is dense in [0, infinity). Finally, we consider beta to be a function on L(G) and we indicate some of its properties, the main result being the classification of finite abelian p-groups C satisfying beta(H) <= 1, for all H is an element of L(C).
引用
收藏
页数:20
相关论文
共 50 条
  • [1] The number of subgroups of a finite group
    Takegahara, Y
    JOURNAL OF ALGEBRA, 2000, 227 (02) : 783 - 796
  • [2] On the number of subgroups of a finite group
    Lu, Jiakuan
    Wang, Yu
    Zhang, Boru
    Meng, Wei
    RICERCHE DI MATEMATICA, 2024, 73 (04) : 1867 - 1872
  • [3] On the number of maximal subgroups in a finite group
    Lauderdale, L. -K.
    JOURNAL OF GROUP THEORY, 2015, 18 (04) : 535 - 551
  • [4] The number of subgroups of a finite group (II)
    Takegahara, Yugen
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (05) : 1964 - 1972
  • [5] On the maximum number of subgroups of a finite group
    Fusari, Marco
    Spiga, Pablo
    JOURNAL OF ALGEBRA, 2023, 635 : 486 - 526
  • [6] On the Number of Cyclic Subgroups of a Finite Group
    Garonzi, Martino
    Lima, Igor
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2018, 49 (03): : 515 - 530
  • [7] ON THE NUMBER OF CYCLIC SUBGROUPS OF A FINITE GROUP
    Jafari, Mohammad Hossein
    Madadi, Ali Reza
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (06) : 2141 - 2147
  • [8] On the Number of Cyclic Subgroups of a Finite Group
    Martino Garonzi
    Igor Lima
    Bulletin of the Brazilian Mathematical Society, New Series, 2018, 49 : 515 - 530
  • [9] NUMBER OF SUBGROUPS OF A FINITE ABEL GROUP
    DYUBYUK, PE
    DOKLADY AKADEMII NAUK SSSR, 1961, 137 (03): : 506 - &
  • [10] On the Number of Cyclic Subgroups in a Finite Group
    Haghi, E.
    Ashrafi, A. R.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2018, 42 (06) : 865 - 873