On the Number of Cyclic Subgroups of a Finite Group

被引:0
|
作者
Martino Garonzi
Igor Lima
机构
[1] Universidade de Brasília,Departamento de Matemática
[2] Campus Universitário Darcy Ribeiro,undefined
[3] Universidade Federal de Goiás,undefined
[4] IMTec - Regional Catalão,undefined
关键词
Finite groups; Solvable groups; Subgroup lattice; Cyclic subgroups;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a finite group and let c(G) be the number of cyclic subgroups of G. We study the function α(G)=c(G)/|G|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (G) = c(G)/|G|$$\end{document}. We explore its basic properties and we point out a connection with the probability of commutation. For many families F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {F}$$\end{document} of groups we characterize the groups G∈F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \in \mathscr {F}$$\end{document} for which α(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (G)$$\end{document} is maximal and we classify the groups G for which α(G)>3/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (G) > 3/4$$\end{document}. We also study the number of cyclic subgroups of a direct power of a given group deducing an asymptotic result and we characterize the equality α(G)=α(G/N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (G) = \alpha (G/N)$$\end{document} when G / N is a symmetric group.
引用
收藏
页码:515 / 530
页数:15
相关论文
共 50 条