National Empirical Models of Air Pollution Using Microscale Measures of the Urban Environment

被引:22
|
作者
Lu, Tianjun [7 ]
Marshall, Julian D. [1 ]
Zhang, Wenwen [2 ]
Hystad, Perry [3 ]
Kim, Sun-Young [4 ]
Bechle, Matthew J. [1 ]
Demuzere, Matthias [5 ]
Hankey, Steve [6 ]
机构
[1] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA
[2] Rutgers State Univ, Edward J Bloustein Sch Planning & Publ Policy, New Brunswick, NJ 08901 USA
[3] Oregon State Univ, Coll Publ Hlth & Human Sci, Corvallis, OR 97331 USA
[4] Natl Canc Ctr, Grad Sch Canc Sci & Policy, Dept Canc Control & Populat Hlth, Goyang Si 10408, South Korea
[5] Ruhr Univ Bochum, Dept Geog, Urban Climatol Grp, D-44801 Bochum, Germany
[6] Virginia Tech, Sch Publ & Int Affairs, Blacksburg, VA 24061 USA
[7] Calif State Univ Dominguez Hills, Dept Earth Sci & Geog, Carson, CA 90747 USA
关键词
Empirical models; street-level features; urban form; exposure assessment; machine learning; LAND-USE REGRESSION; GOOGLE STREET VIEW; EXPOSURE ASSESSMENT; ULTRAFINE PARTICLES; BLACK CARBON; PM2.5; NUMBER; CANADA; OXIDES;
D O I
10.1021/acs.est.1c04047
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
National-scale empirical models of air pollution (e.g., Land Use Regression) rely on predictor variables (e.g., population density, land cover) at different geographic scales. These models typically lack microscale variables (e.g., street level), which may improve prediction with fine-spatial gradients. We developed microscale variables of the urban environment including Point of Interest (POI) data, Google Street View (GSV) imagery, and satellite-based measures of urban form. We developed United States national models for six criteria pollutants (NO2, PM2.5, O-3, CO, PM10, SO2) using various modeling approaches: Stepwise Regression + kriging (SW-K), Partial Least Squares + kriging (PLS-K), and Machine Learning + kriging (ML-K). We compared predictor variables (e.g., traditional vs microscale) and emerging modeling approaches (ML-K) to well-established approaches (i.e., traditional variables in a PLS-K or SW-K framework). We found that combined predictor variables (traditional + microscale) in the ML-K models outperformed the well-established approaches (10-fold spatial cross-validation (CV) R-2 increased 0.02-0.42 [average: 0.19] among six criteria pollutants). Comparing all model types using microscale variables to models with traditional variables, the performance is similar (average difference of 10-fold spatial CV R-2 = 0.05) suggesting microscale variables are a suitable substitute for traditional variables. ML-K and microscale variables show promise for improving national empirical models.
引用
收藏
页码:15519 / 15530
页数:12
相关论文
共 50 条
  • [21] Using dispersion models at microscale to assess long-term air pollution in urban hot spots: A FAIRMODE joint intercomparison exercise for a case study in Antwerp
    Martin, F.
    Janssen, S.
    Rodrigues, V.
    Sousa, J.
    Santiago, J. L.
    Rivas, E.
    Stocker, J.
    Jackson, R.
    Russo, F.
    Villani, M. G.
    Tinarelli, G.
    Barbero, D.
    San Jose, R.
    Perez-Camanyo, J. L.
    Santos, G. Sousa
    Bartzis, J.
    Sakellaris, I.
    Horvath, Z.
    Kornyei, L.
    Liszkai, B.
    Kovacs, A.
    Jurado, X.
    Reiminger, N.
    Thunis, P.
    Cuvelier, C.
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 925
  • [22] Considerations for evaluating green infrastructure impacts in microscale and macroscale air pollution dispersion models
    Tiwari, Arvind
    Kumar, Prashant
    Baldauf, Richard
    Zhang, K. Max
    Pilla, Francesco
    Di Sabatino, Silvana
    Brattich, Erika
    Pulvirenti, Beatrice
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 672 : 410 - 426
  • [23] VALIDITY OF GRID AND TRAJECTORY MODELS OF URBAN AIR-POLLUTION
    NORDLUND, G
    [J]. ATMOSPHERIC ENVIRONMENT, 1976, 10 (05) : 418 - 418
  • [24] Urban air pollution forecast based on the Gaussian and regression models
    Zickus, M
    Kvietkus, K
    [J]. AIR POLLUTION VI, 1998, 6 : 515 - 523
  • [25] VALIDITY OF GRID AND TRAJECTORY MODELS OF URBAN AIR-POLLUTION
    LIU, MK
    SEINFELD, JH
    [J]. ATMOSPHERIC ENVIRONMENT, 1975, 9 (6-7) : 555 - 574
  • [26] Quantifying urban street configuration for improvements in air pollution models
    Eeftens, Marloes
    Beekhuizen, Johan
    Beelen, Rob
    Wang, Meng
    Vermeulen, Roe
    Brunekreef, Bert
    Huss, Anke
    Hoek, Gerard
    [J]. ATMOSPHERIC ENVIRONMENT, 2013, 72 : 1 - 9
  • [27] COMPARISON OF GRID AND TRAJECTORY MODELS OF URBAN AIR-POLLUTION
    LIU, MK
    SEINFELD, JH
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 1974, 55 (05) : 521 - 521
  • [28] A COMPARISON STUDY OF 3 URBAN AIR-POLLUTION MODELS
    RAO, KS
    KU, JY
    RAO, ST
    [J]. ATMOSPHERIC ENVIRONMENT, 1989, 23 (04) : 793 - 801
  • [29] MODELLING OF TRAFFIC POLLUTION AT AN URBAN SITE USING A MICROSCALE CFD DISPERSION MODEL
    Papas, Dimitrios
    Efstathiou, George A.
    Zoumakis, Nicholas M.
    Koutroubelis, Stelios
    Kelessis, Apostolos G.
    Petrakakis, Maximos J.
    [J]. FRESENIUS ENVIRONMENTAL BULLETIN, 2010, 19 (9B): : 1997 - 2001
  • [30] HEALTH AND URBAN ENVIRONMENT .V. AIR POLLUTION AND ILLNESS IN A NORMAL URBAN POPULATION
    MCCARROLL, J
    CASSELL, EJ
    WOLTER, DW
    MOUNTAIN, JD
    DIAMOND, JR
    MOUNTAIN, IM
    [J]. ARCHIVES OF ENVIRONMENTAL HEALTH, 1967, 14 (01): : 178 - +