National Empirical Models of Air Pollution Using Microscale Measures of the Urban Environment

被引:22
|
作者
Lu, Tianjun [7 ]
Marshall, Julian D. [1 ]
Zhang, Wenwen [2 ]
Hystad, Perry [3 ]
Kim, Sun-Young [4 ]
Bechle, Matthew J. [1 ]
Demuzere, Matthias [5 ]
Hankey, Steve [6 ]
机构
[1] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA
[2] Rutgers State Univ, Edward J Bloustein Sch Planning & Publ Policy, New Brunswick, NJ 08901 USA
[3] Oregon State Univ, Coll Publ Hlth & Human Sci, Corvallis, OR 97331 USA
[4] Natl Canc Ctr, Grad Sch Canc Sci & Policy, Dept Canc Control & Populat Hlth, Goyang Si 10408, South Korea
[5] Ruhr Univ Bochum, Dept Geog, Urban Climatol Grp, D-44801 Bochum, Germany
[6] Virginia Tech, Sch Publ & Int Affairs, Blacksburg, VA 24061 USA
[7] Calif State Univ Dominguez Hills, Dept Earth Sci & Geog, Carson, CA 90747 USA
关键词
Empirical models; street-level features; urban form; exposure assessment; machine learning; LAND-USE REGRESSION; GOOGLE STREET VIEW; EXPOSURE ASSESSMENT; ULTRAFINE PARTICLES; BLACK CARBON; PM2.5; NUMBER; CANADA; OXIDES;
D O I
10.1021/acs.est.1c04047
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
National-scale empirical models of air pollution (e.g., Land Use Regression) rely on predictor variables (e.g., population density, land cover) at different geographic scales. These models typically lack microscale variables (e.g., street level), which may improve prediction with fine-spatial gradients. We developed microscale variables of the urban environment including Point of Interest (POI) data, Google Street View (GSV) imagery, and satellite-based measures of urban form. We developed United States national models for six criteria pollutants (NO2, PM2.5, O-3, CO, PM10, SO2) using various modeling approaches: Stepwise Regression + kriging (SW-K), Partial Least Squares + kriging (PLS-K), and Machine Learning + kriging (ML-K). We compared predictor variables (e.g., traditional vs microscale) and emerging modeling approaches (ML-K) to well-established approaches (i.e., traditional variables in a PLS-K or SW-K framework). We found that combined predictor variables (traditional + microscale) in the ML-K models outperformed the well-established approaches (10-fold spatial cross-validation (CV) R-2 increased 0.02-0.42 [average: 0.19] among six criteria pollutants). Comparing all model types using microscale variables to models with traditional variables, the performance is similar (average difference of 10-fold spatial CV R-2 = 0.05) suggesting microscale variables are a suitable substitute for traditional variables. ML-K and microscale variables show promise for improving national empirical models.
引用
收藏
页码:15519 / 15530
页数:12
相关论文
共 50 条
  • [1] Impact of single and combined local air pollution mitigation measures in an urban environment
    Santiago, J. L.
    Rivas, E.
    Sanchez, B.
    Buccolieri, R.
    Vivanco, M. G.
    Martilli, A.
    Martin, F.
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 924
  • [2] Analyzing air pollution on the urban environment
    Baralis, Elena
    Cerquitelli, Tania
    Chiusano, Silvia
    Garza, Paolo
    Kavoosifar, Mohammad Reza
    [J]. 2016 39TH INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2016, : 1464 - 1469
  • [3] INFLUENCE OF VEGETATION IN URBAN ENVIRONMENT ON AIR POLLUTION
    LAMANNA, C
    [J]. BIOSCIENCE, 1970, 20 (04) : 201 - &
  • [4] URBAN AIR-POLLUTION IN A SUBURBAN ENVIRONMENT
    RAYNOR, GS
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 1972, 53 (07) : 711 - &
  • [5] Air pollution records on selenite in the urban environment
    Del Monte, M
    Ausset, P
    Forti, P
    Lèfevre, RA
    Tolomelli, M
    [J]. ATMOSPHERIC ENVIRONMENT, 2001, 35 (22) : 3885 - 3896
  • [6] CAUSES AND CONTROL MEASURES OF URBAN AIR POLLUTION IN CHINA
    Sarwar M.T.
    Hui Z.H.
    Maqbool A.
    [J]. Environmental Engineering Science, 2019, 3 (01) : 35 - 36
  • [7] Effects of peri-urban structure on air pollution Using CA models to understand the link between urban structure and air pollution
    Schindler, M.
    Caruso, G.
    [J]. INTERNATIONAL PROCEEDINGS ON CELLULAR AUTOMATA MODELING FOR URBAN AND SPATIAL SYSTEM, CAMUSS 2012, 2012, : 281 - 292
  • [8] 2 MODELS OF URBAN AIR-POLLUTION
    ROBSON, AJ
    [J]. JOURNAL OF URBAN ECONOMICS, 1976, 3 (03) : 264 - 284
  • [9] Air Pollution Dispersion Modelling in Urban Environment Using CFD: A Systematic Review
    Pantusheva, Mariya
    Mitkov, Radostin
    Hristov, Petar O.
    Petrova-Antonova, Dessislava
    [J]. ATMOSPHERE, 2022, 13 (10)
  • [10] Modeling of PM10 Air Pollution in Urban Environment Using MARS
    Gocheva-Ilieva, Snezhana G.
    Ivanov, Atanas V.
    Voynikova, Desislava S.
    Stoimenova, Maya P.
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2019), 2020, 11958 : 237 - 244