Structure-properties relation for agarose thermoreversible gels in binary solvents

被引:53
|
作者
Ramzi, M
Rochas, C
Guenet, JM
机构
[1] Univ Strasbourg 1, CNRS UMR 7506, Lab Dynam Fluides Complexes, F-67070 Strasbourg, France
[2] Universite Joseph Fourier, CNRS UMR 5588, Spectrometrie Phys Lab, F-38402 St Martin Dheres, France
关键词
D O I
10.1021/ma9801220
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The structure of agarose gels prepared in aqueous binary solvents has been studied by means of X-ray and neutron small-angle scattering. The scattering curves are interpreted by considering a random assembly of straight fibers displaying cross-section polydispersity. The cross-section polydispersity is well accounted for with a distribution function of the type w(r) similar to r(-lambda) bounded by two radii, r(min) and r(max), and where lambda depends upon both the nature of the binary solvent and the agarose concentration. Departure from the Pored regime at wide scattering angles suggests the existence of free and/or dangling chains that do not participate in the network elasticity (loose chains). The fraction of loose chains gradually vanishes upon increasing the agarose concentration. Experimental elastic modulus-concentration relations obtained on the same type of samples point to the occurrence of entropic elasticity once analyzed in light of the existence of loose chains. Entropic elasticity is rather consistent with disorganized gel junctions.
引用
收藏
页码:6106 / 6111
页数:6
相关论文
共 50 条
  • [31] VISCOELASTIC PROPERTIES OF THERMOREVERSIBLE GELS .1. GELS FROM STEREOSPECIFIC POLYMETHYL METHACRYLATES
    PYRLIK, M
    REHAGE, G
    [J]. RHEOLOGICA ACTA, 1975, 14 (04) : 303 - 311
  • [32] Viscoelastic properties of thermoreversible gels from chemically modified PVCs
    Lopez, D
    Mijangos, C
    Munoz, ME
    Santamaria, A
    [J]. MACROMOLECULES, 1996, 29 (22) : 7108 - 7115
  • [33] Swelling of scleroglucan gels in binary DMSO/water solvents
    Guo, B
    Stokke, BT
    Elgsaeter, A
    [J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 1996, 112 (2-3) : 185 - 191
  • [34] Function, Structure, and Stability of Enzymes Confined in Agarose Gels
    Kunkel, Jeffrey
    Asuri, Prashanth
    [J]. PLOS ONE, 2014, 9 (01):
  • [35] STRUCTURE-PROPERTIES RELATIONSHIPS IN OPTICAL COATINGS
    HACKER, E
    KERSTEN, RT
    WEISSBRODT, P
    [J]. PHYSICA SCRIPTA, 1993, T49B : 525 - 538
  • [36] Effect of sugars on the mechanical and thermal properties of agarose gels
    Deszczynski, M
    Kasapis, S
    MacNaughton, W
    Mitchell, JR
    [J]. FOOD HYDROCOLLOIDS, 2003, 17 (06) : 793 - 799
  • [37] Physics of agarose fluid gels: Rheological properties and microstructure
    Ghebremedhin, Marta
    Seiffert, Sebastian
    Vilgis, Thomas A.
    [J]. CURRENT RESEARCH IN FOOD SCIENCE, 2021, 4 : 436 - 448
  • [38] RHEOLOGICAL PROPERTIES OF AQUEOUS AGAROSE-GELATIN GELS
    MORITAKA, H
    NISHINARI, K
    HORIUCHI, H
    WATASE, M
    [J]. JOURNAL OF TEXTURE STUDIES, 1980, 11 (03) : 257 - 270
  • [39] Laws of the Formation and Diffusion Properties of Silica and Agarose Gels
    B. G. Pokusaev
    S. P. Karlov
    A. V. Vyaz’min
    D. A. Nekrasov
    [J]. Theoretical Foundations of Chemical Engineering, 2018, 52 : 222 - 233
  • [40] Ultrasonic wave properties in the particle compounded agarose gels
    Matsukawa, M
    Akimoto, T
    Ueba, S
    Otani, T
    [J]. ULTRASONICS, 2002, 40 (1-8) : 323 - 327