The molecular mechanism of monolayer-bilayer transformations of lung surfactant from molecular dynamics simulations

被引:84
|
作者
Baoukina, Svetlana
Monticelli, Luca
Amrein, Matthias
Tieleman, D. Peter
机构
[1] Univ Calgary, Dept Biol Sci, Calgary, AB T2N 1N4, Canada
[2] Univ Calgary, Fac Med, Dept Anat & Cell Biol, Calgary, AB T2N 1N4, Canada
关键词
D O I
10.1529/biophysj.107.113399
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The aqueous lining of the lung surface exposed to the air is covered by lung surfactant, a film consisting of lipid and protein components. The main function of lung surfactant is to reduce the surface tension of the air- water interface to the low values necessary for breathing. This function requires the exchange of material between the lipid monolayer at the interface and lipid reservoirs under dynamic compression and expansion of the interface during the breathing cycle. We simulated the reversible exchange of material between the monolayer and lipid reservoirs under compression and expansion of the interface. We used a mixture of dipalmitoyl- phosphatidylcholine, palmitoyl-oleoyl- phosphatidylglycerol, cholesterol, and surfactant-associated protein C as a functional analog of mammalian lung surfactant. In our simulations, the monolayer collapses into the water subphase on compression and forms bilayer folds. On monolayer reexpansion, the material is transferred from the folds back to the interface. The simulations indicate that the connectivity of the bilayer aggregates to the monolayer is necessary for the reversibility of the monolayer- bilayer transformation. The simulations also show that bilayer aggregates are unstable in the air subphase and stable in the water subphase.
引用
收藏
页码:3775 / 3782
页数:8
相关论文
共 50 条
  • [21] An alamethicin channel in a lipid bilayer: Molecular dynamics simulations
    Tieleman, DP
    Berendsen, HJC
    Sansom, MSP
    [J]. BIOPHYSICAL JOURNAL, 1999, 76 (04) : 1757 - 1769
  • [22] Molecular dynamics simulations of glyphosate in a DPPC lipid bilayer
    Frigini, Ezequiel N.
    Lopez Cascales, J. J.
    Porasso, Rodolfo D.
    [J]. CHEMISTRY AND PHYSICS OF LIPIDS, 2018, 213 : 111 - 117
  • [23] Molecular dynamics simulations of ubiquinone inside a lipid bilayer
    Söderhäll, JA
    Laaksonen, A
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (38): : 9308 - 9315
  • [24] Alamethicin helices in a bilayer and in solution: Molecular dynamics simulations
    Tieleman, DP
    Sansom, MSP
    Berendsen, HJC
    [J]. BIOPHYSICAL JOURNAL, 1999, 76 (01) : 40 - 49
  • [25] Molecular dynamics simulations of a mixed DOPC/DOPG bilayer
    K. Balali-Mood
    T.A. Harroun
    J.P. Bradshaw
    [J]. The European Physical Journal E, 2003, 12 : 135 - 140
  • [26] Molecular dynamics simulations of a DPPC/DPPG monolayer.
    Kaznessis, YN
    Kim, S
    Larson, RG
    [J]. BIOPHYSICAL JOURNAL, 2000, 78 (01) : 331A - 331A
  • [27] Molecular dynamics simulations of nanoscale engravings on an alkanethiol monolayer
    Zhang, Zhengqing
    Ahn, Yoonho
    Jang, Joonkyung
    [J]. RSC ADVANCES, 2017, 7 (56): : 35537 - 35542
  • [28] Molecular Dynamics Simulations for a Pentacene Monolayer on Amorphous Silica
    Della Valle, Raffaele Guido
    Venuti, Elisabetta
    Brillante, Aldo
    Girlando, Alberto
    [J]. CHEMPHYSCHEM, 2009, 10 (11) : 1783 - 1788
  • [29] Molecular dynamics on the monolayer of anionic surfactant at vapor/liquid interface
    Yuan Shi-Ling
    Cui Peng
    Xu Gui-Ying
    Liu Cheng-Bu
    [J]. ACTA CHIMICA SINICA, 2006, 64 (16) : 1659 - 1664
  • [30] The microscopic mechanism of surfactant epitaxy by molecular dynamics
    Mae, K
    Kyuno, K
    Yamamoto, R
    [J]. MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 1996, 4 (01) : 73 - 85