Reaction-diffusion equations in space-time periodic media

被引:5
|
作者
Nadin, Gregoire [1 ]
机构
[1] Ecole Normale Super, Dept Math & Applicat, F-75005 Paris, France
关键词
D O I
10.1016/j.crma.2007.10.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This Note deals with reaction-diffusion in space-time periodic media. We state some conditions for the existence, uniqueness and large-time behavior of the solutions of Such equations. These conditions are related to the two generalized principal eigenvalues associated with a linearized equation and we state some properties of these quantities.
引用
收藏
页码:489 / 493
页数:5
相关论文
共 50 条
  • [21] Space-Time Fractional Reaction-Diffusion Equations Associated with a Generalized Riemann-Liouville Fractional Derivative
    Saxena, Ram K.
    Mathai, Arak M.
    Haubold, Hans J.
    AXIOMS, 2014, 3 (03) : 320 - 334
  • [22] PERIODIC CURVED FRONTS IN REACTION-DIFFUSION EQUATIONS WITH IGNITION TIME-PERIODIC NONLINEARITY
    Zhang, Suobing
    Bu, Zhen-hui
    Wang, Zhi-cheng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, : 2621 - 2654
  • [23] The influence of electric field on the space-time patterns in the reaction-diffusion system
    Lobanov, AI
    Plyusnina, TY
    Starozhilova, TK
    Riznichenko, GY
    Rubin, AB
    BIOFIZIKA, 2000, 45 (03): : 495 - 501
  • [24] Propagation dynamics of degenerate monostable equations in space-time periodic media
    He, Junfeng
    Bo, Wei-Jian
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 232
  • [25] BISTABLE REACTION-DIFFUSION EQUATIONS AND EXCITABLE MEDIA
    GARTNER, J
    MATHEMATISCHE NACHRICHTEN, 1983, 112 : 125 - 152
  • [26] A generalized-Jacobi-function spectral method for space-time fractional reaction-diffusion equations with viscosity terms
    Yu, Zhe
    Wu, Boying
    Sun, Jiebao
    Liu, Wenjie
    APPLIED NUMERICAL MATHEMATICS, 2020, 152 (152) : 355 - 378
  • [27] Solving linear and non-linear space-time fractional reaction-diffusion equations by the Adomian decomposition method
    Yu, Q.
    Liu, F.
    Anh, V.
    Turner, I.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 74 (01) : 138 - 158
  • [28] Uniqueness of monostable pulsating wave fronts for time periodic reaction-diffusion equations
    Zhang, Ping-An
    Li, Wan-Tong
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (03) : 1300 - 1305
  • [29] CONVERGENCE TO TRAVELING WAVES FOR TIME-PERIODIC BISTABLE REACTION-DIFFUSION EQUATIONS
    Ding, Weiwei
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (04) : 1647 - 1661
  • [30] CURVED FRONTS IN TIME-PERIODIC REACTION-DIFFUSION EQUATIONS WITH MONOSTABLE NONLINEARITY
    Zhang, Suobing
    Bu, Zhen-hui
    Wang, Zhi-cheng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (02): : 547 - 584