A Sparse Multi-class Classifier for Biomarker Screening

被引:0
|
作者
Liu, Tzu-Yu [1 ]
Wiesel, Ami [2 ]
Hero, Alfred O. [1 ,3 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[2] Hebrew Univ Jerusalem, Sch Comp Sci & Engn, IL-91905 Jerusalem, Israel
[3] Univ Michigan, Ctr Computat Biol & Bioinformat, Ann Arbor, MI 48109 USA
关键词
Multi-class classification; variable selection; sparsity; dimension reduction; augmented Lagrangian optimization; VECTOR; SELECTION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We introduce an approach to sparsity penalized multi-class classifier design that accounts for multi-block structure of the data. The unified multi-class classifier is parameterized by a set of weights defined over the classes and over the blocks. The proposed sparse multi-block multi-class classifier imposes structured sparsity on the weights so that the same variables are selected for all classes and all blocks. The classifier is trained to minimize an objective function that captures the unified miss-classification probabilities of error over the classes in addition to the sparsity of the weights. The optimization of the objective function is implemented by a convex augmented Lagrangian and variable splitting method. This results in a classifier that automatically selects biomarkesr for inclusion or exclusion in the classifier and results in significantly improved classifier performance. The approach is illustrated on publicly available longitudinal gene microarray data.
引用
收藏
页码:77 / 80
页数:4
相关论文
共 50 条
  • [31] Multi-class Multi-tag Classifier System for StackOverflow Questions
    Cedeno Gonzalez, Jose R.
    Flores Romero, Juan J.
    Graff Guerrero, Mario
    Calderon, Felix
    [J]. 2015 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC), 2015,
  • [32] General sparse multi-class linear discriminant analysis
    Safo, Sandra E.
    Ahn, Jeongyoun
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 99 : 81 - 90
  • [33] AUC Evaluation of Multi-class Classifier Performance in Imbalanced Data
    Ni, Huangjing
    Wang, Wei
    [J]. 2010 INTERNATIONAL CONFERENCE ON FUTURE CONTROL AND AUTOMATION (ICFCA 2010), 2010, : 48 - 51
  • [34] On the Influence of Interval Normalization in IVOVO Fuzzy Multi-class Classifier
    Uriz, Mikel
    Paternain, Daniel
    Bustince, Humberto
    Galar, Mikel
    [J]. FUZZY TECHNIQUES: THEORY AND APPLICATIONS, 2019, 1000 : 44 - 57
  • [35] A simple and fast multi-class piecewise linear pattern classifier
    Kostin, Alexander
    [J]. PATTERN RECOGNITION, 2006, 39 (11) : 1949 - 1962
  • [36] A multi-class SVM classifier utilizing binary decision tree
    Madzarov, Gjorgji
    Gjorgjevikj, Dejan
    Chorbev, Ivan
    [J]. Informatica (Ljubljana), 2009, 33 (02) : 233 - 242
  • [37] A Multi-class SVM Classifier Utilizing Binary Decision Tree
    Madzarov, Gjorgji
    Gjorgjevikj, Dejan
    Chorbev, Ivan
    [J]. INFORMATICA-JOURNAL OF COMPUTING AND INFORMATICS, 2009, 33 (02): : 225 - 233
  • [38] A study of the associative pattern classifier method for multi-class processes
    Santiago-Montero, R.
    Sergio Valadez, G.
    Sossa, Humberto
    Gutierrez Hernandez, David Asael
    Ornerlas-Rodriguez, Manuel
    [J]. JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2015, 17 (5-6): : 713 - 719
  • [39] Incremental proximal support vector classifier for multi-class classification
    Wu, J
    Zhou, JG
    Yan, PL
    [J]. PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 3201 - 3206
  • [40] Multi-class Nearest Neighbour Classifier for Incomplete Data Handling
    Nowak, Bartosz A.
    Nowicki, Robert K.
    Wozniak, Marcin
    Napoli, Christian
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT I, 2015, 9119 : 469 - 480