Schiff-Base Covalent Organic Framework/Carbon Nanotubes Composite for Advanced Potassium-Ion Batteries

被引:28
|
作者
Sun, Jianlu [1 ]
Xu, Yifan [1 ]
Li, An [1 ]
Tian, Ruiqi [1 ]
Fei, Yating [1 ]
Chen, Bingbing [2 ]
Zhou, Xiaosi [1 ]
机构
[1] Nanjing Normal Univ, Sch Chem & Mat Sci, Nanjing 210023, Peoples R China
[2] Nanjing Tech Univ, Sch Energy Sci & Engn, Nanjing 210009, Peoples R China
基金
中国国家自然科学基金;
关键词
potassium-ion batteries; anode; covalent organic frameworks; carbon nanotubes; core-shell structure; TOTAL-ENERGY CALCULATIONS; CONSTRUCTION; STORAGE;
D O I
10.1021/acsanm.2c03634
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Covalent organic frameworks (COFs) are attractive candidates for low-cost potassium-ion battery (PIB) electrode materials due to their inherent porosity, well-organized channel structure, and excellent thermochemical stability. Herein, a Schiff-base COF/carbon nanotubes (TP-COF/CNTs) composite is synthesized by a condensation reaction between 1,3,5-triformylbenzene (TFB) and p- phenylenediamine (PPD) on the surface of CNTs as an anode for PIBs. The introduction of CNTs not only assumes the role of a conductive network in improving the kinetics of potassium ions (K+) but also induces the growth of COFs through pi-pi interactions, leading to more exposure of more active sites. In consequence, the core-shell-structured TP-COF/CNTs exhibit advanced K storage performance (290 mA h g-1 after 200 cycles at 0.1 A g-1) and fine rate capability (169 mA h g-1 at 1 A g-1), outperforming most COF materials. Furthermore, X-ray photoelectron spectroscopy, ex situ infrared analysis, and density functional theory calculations indicate that the storage of K+ depends on electroactive CN groups and the pi-K+ effect. This work supplies PIBs with a promising high-performance anode material and may benefit the development of COFs for PIBs.
引用
收藏
页码:15592 / 15599
页数:8
相关论文
共 50 条
  • [41] Isomeric Routes to Schiff-Base Single-layered Covalent Organic Frameworks
    Liu, Xuan-He
    Mo, Yi-Ping
    Yue, Jie-Yu
    Zheng, Qing-Na
    Yan, Hui-Juan
    Wang, Dong
    Wan, Li-Jun
    SMALL, 2014, 10 (23) : 4934 - 4939
  • [42] Organic electrode for non-aqueous potassium-ion batteries
    Chen, Yanan
    Luo, Wei
    Carter, Marcus
    Zhou, Lihui
    Dai, Jiaqi
    Fu, Kun
    Lacey, Steven
    Li, Tian
    Wan, Jiayu
    Han, Xiaogang
    Bao, Yanping
    Hu, Liangbing
    NANO ENERGY, 2015, 18 : 205 - 211
  • [43] [n]Phenacenes: Promising Organic Anodes for Potassium-Ion Batteries
    Li, Meng-Hu
    Zhang, Si-Yuan
    Lv, Hai-Yan
    Li, Wen-Jie
    Lu, Ziheng
    Yang, Chunlei
    Zhong, Guo-Hua
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (13): : 6964 - 6970
  • [44] Tellurium-doped MoS2/carbon composite nanotubes for potassium-ion capacitors
    Zhang, Xue
    Tian, Shuang
    Liu, Sen
    Wang, Tengteng
    Huang, Jingyi
    Gao, Peibo
    Feng, Yu
    Zhou, Jin
    Zhou, Tong
    APPLIED PHYSICS LETTERS, 2024, 125 (26)
  • [45] Developments and prospects of carbon anode materials in potassium-ion batteries
    Liu, Zhaomeng
    Gong, Zhiqing
    He, Kunyang
    Qiu, Peng
    Wang, Xuan-Chen
    Zhao, Lu-Kang
    Gu, Qin-Fen
    Gao, Xuan-Wen
    Luo, Wen-Bin
    SCIENCE CHINA-MATERIALS, 2025, 68 (03) : 709 - 723
  • [46] Enhanced capacity of chemically bonded phosphorus/carbon composite as an anode material for potassium-ion batteries
    Wu, Xuan
    Zhao, Wei
    Wang, Hong
    Qi, Xiujun
    Xing, Zheng
    Zhuang, Quanchao
    Ju, Zhicheng
    JOURNAL OF POWER SOURCES, 2018, 378 : 460 - 467
  • [47] Alkynyl-Based Covalent Organic Frameworks as High-Performance Anode Materials for Potassium-Ion Batteries
    Wolfson, Eric R.
    Schkeryantz, Luke
    Moscarello, Erica M.
    Fernandez, Joseph P.
    Paszek, Jonah
    Wu, Yiying
    Hadad, Christopher M.
    McGrier, Psaras L.
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (35) : 41628 - 41636
  • [48] Rational design of carbon materials as anodes for potassium-ion batteries
    Wu, Yuanming
    Zhao, Haitao
    Wu, Zhenguo
    Yue, Luchao
    Liang, Jie
    Liu, Qian
    Luo, Yonglan
    Gao, Shuyan
    Lu, Siyu
    Chen, Guang
    Shi, Xifeng
    Zhong, Benhe
    Guo, Xiaodong
    Sun, Xuping
    ENERGY STORAGE MATERIALS, 2021, 34 : 483 - 507
  • [49] Rational design of carbon materials as anodes for potassium-ion batteries
    Wu, Yuanming
    Zhao, Haitao
    Wu, Zhenguo
    Yue, Luchao
    Liang, Jie
    Liu, Qian
    Luo, Yonglan
    Gao, Shuyan
    Lu, Siyu
    Chen, Guang
    Shi, Xifeng
    Zhong, Benhe
    Guo, Xiaodong
    Sun, Xuping
    Energy Storage Materials, 2021, 34 : 483 - 507
  • [50] Hard Carbon as Anodes for Potassium-Ion Batteries: Developments and Prospects
    Qiu, Peng
    Chen, Haohong
    Zhang, Hanzhi
    Wang, Han
    Wang, Lianhao
    Guo, Yingying
    Qi, Ji
    Yi, Yong
    Zhang, Guobin
    INORGANICS, 2024, 12 (12)