Eichler orders and Jacobi forms of squarefree level

被引:1
|
作者
Li, Yan-Bin [1 ]
Skoruppa, Nils-Peter [1 ,2 ]
Zhou, Haigang [1 ]
机构
[1] Tongji Univ, Sch Math Sci, Shanghai, Peoples R China
[2] Univ Siegen, Siegen, Germany
关键词
Jacobi forms; Definite quaternion algebras; Eichler orders; Class numbers; Type numbers; Theta series; Eisenstein series;
D O I
10.1016/j.jnt.2021.07.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For all Eichler orders with a same squarefree level in a definite quaternion algebra over the field of rational numbers, we prove that a weighted sum of Jacobi theta series associated to these orders is a Jacobi Eisenstein series. Multiply the Fourier coefficients of the latter by a power of 2 to get our modified Hurwitz class numbers. As its corollaries, the modified Hurwitz class numbers can be used to calculate the traces of Brandt matrices and the type number of the Eichler orders. (c) 2021 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:349 / 387
页数:39
相关论文
共 50 条
  • [31] Eichler integrals and harmonic weak Maass forms
    Choi, Dohoon
    Kim, Byungchan
    Lim, Subong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 411 (01) : 429 - 441
  • [32] Eichler–Shimura theory for mock modular forms
    Kathrin Bringmann
    Pavel Guerzhoy
    Zachary Kent
    Ken Ono
    Mathematische Annalen, 2013, 355 : 1085 - 1121
  • [33] EICHLER COHOMOLOGY FOR GENERALIZED MODULAR FORMS II
    Knopp, Marvin
    Raji, Wissam
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (05) : 1083 - 1090
  • [34] RINGS OF MODULAR-FORMS - ON EICHLER PROBLEM
    TSUYUMINE, S
    NAGOYA MATHEMATICAL JOURNAL, 1985, 99 (SEP) : 31 - 44
  • [35] EICHLER COHOMOLOGY THEOREM FOR GENERALIZED MODULAR FORMS
    Raji, Wissam
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (04) : 1103 - 1113
  • [37] Newforms of squarefree level and theta series
    Ponomarev, Paul
    MATHEMATISCHE ANNALEN, 2009, 345 (01) : 185 - 193
  • [38] Newforms of squarefree level and theta series
    Paul Ponomarev
    Mathematische Annalen, 2009, 345 : 185 - 193
  • [39] Jacobi forms that characterize paramodular forms
    Tomoyoshi Ibukiyama
    Cris Poor
    David S. Yuen
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2013, 83 : 111 - 128
  • [40] Jacobi forms that characterize paramodular forms
    Ibukiyama, Tomoyoshi
    Poor, Cris
    Yuen, David S.
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2013, 83 (01): : 111 - 128