Concavity of the Auxiliary Function for Classical-Quantum Channels

被引:11
|
作者
Cheng, Hao-Chung [1 ,2 ]
Hsieh, Min-Hsiu [2 ]
机构
[1] Natl Taiwan Univ, Grad Inst Commun Engn, Taipei 10617, Taiwan
[2] Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Quantum Computat & Intelligent Syst, Ultimo, NSW 2007, Australia
关键词
Auxiliary function; classical-quantum channel; matrix geometric mean; reliability function; sphere-packing bound; LOWER BOUNDS; INEQUALITIES; PROBABILITY; ERROR;
D O I
10.1109/TIT.2016.2598835
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The auxiliary function of a classical channel appears in two fundamental quantities, the random coding exponent and the sphere-packing exponent, which yield upper and lower bounds on the error probability of decoding, respectively. A crucial property of the auxiliary function is its concavity, and this property consequently leads to several important results in finite blocklength analysis. In this paper, we prove that the auxiliary function of a classical-quantum channel also enjoys the same concavity property, extending an earlier partial result to its full generality. We also prove that the auxiliary function satisfies the data-processing inequality, among various other important properties. Furthermore, we show that the concavity property of the auxiliary function enables a geometric interpretation of the random coding exponent and the sphere-packing exponent of a classical-quantum channel. The key component in our proof is an important result from the theory of matrix geometric means.
引用
收藏
页码:5960 / 5965
页数:6
相关论文
共 50 条
  • [22] Generalized relative entropies and the capacity of classical-quantum channels
    Mosonyi, Milan
    Datta, Nilanjana
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (07)
  • [23] Non-additivity in classical-quantum wiretap channels
    Tikku A.
    Berta M.
    Renes J.M.
    IEEE Journal on Selected Areas in Information Theory, 2020, 1 (02): : 526 - 535
  • [24] Ergodic classical-quantum channels: Structure and coding theorems
    Bjelakovic, Igor
    Boche, Holger
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (02) : 723 - 742
  • [25] A note on random coding bounds for classical-quantum channels
    M. Dalai
    Problems of Information Transmission, 2017, 53 : 222 - 228
  • [26] Secure and Robust Identification via Classical-Quantum Channels
    Boche, Holger
    Deppe, Christian
    Winter, Andreas
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (10) : 6734 - 6749
  • [27] Reliability function of general classical-quantum channel
    Holevo, AS
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (06) : 2256 - 2261
  • [28] Moderate Deviation Analysis for Classical-Quantum Channels and Quantum Hypothesis Testing
    Cheng, Hao-Chung
    Hsieh, Min-Hsiu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (02) : 1385 - 1403
  • [29] Sphere-Packing Bound for Symmetric Classical-Quantum Channels
    Cheng, Hao-Chung
    Hsieh, Min-Hsiu
    Tomamichel, Marco
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 286 - 290
  • [30] Constant Compositions in the Sphere Packing Bound for Classical-Quantum Channels
    Dalai, Marco
    Winter, Andreas
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (09) : 5603 - 5617