Concavity of the Auxiliary Function for Classical-Quantum Channels

被引:11
|
作者
Cheng, Hao-Chung [1 ,2 ]
Hsieh, Min-Hsiu [2 ]
机构
[1] Natl Taiwan Univ, Grad Inst Commun Engn, Taipei 10617, Taiwan
[2] Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Quantum Computat & Intelligent Syst, Ultimo, NSW 2007, Australia
关键词
Auxiliary function; classical-quantum channel; matrix geometric mean; reliability function; sphere-packing bound; LOWER BOUNDS; INEQUALITIES; PROBABILITY; ERROR;
D O I
10.1109/TIT.2016.2598835
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The auxiliary function of a classical channel appears in two fundamental quantities, the random coding exponent and the sphere-packing exponent, which yield upper and lower bounds on the error probability of decoding, respectively. A crucial property of the auxiliary function is its concavity, and this property consequently leads to several important results in finite blocklength analysis. In this paper, we prove that the auxiliary function of a classical-quantum channel also enjoys the same concavity property, extending an earlier partial result to its full generality. We also prove that the auxiliary function satisfies the data-processing inequality, among various other important properties. Furthermore, we show that the concavity property of the auxiliary function enables a geometric interpretation of the random coding exponent and the sphere-packing exponent of a classical-quantum channel. The key component in our proof is an important result from the theory of matrix geometric means.
引用
收藏
页码:5960 / 5965
页数:6
相关论文
共 50 条
  • [1] Remarks on concavity of the auxiliary function appearing in quantum reliability function in classical-quantum channels
    Fujii, JI
    Nakamto, R
    Yanagi, K
    [J]. 2005 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), VOLS 1 AND 2, 2005, : 893 - 895
  • [2] Capacities of Gaussian Classical-Quantum Channels
    Holevo, Alexander S.
    [J]. 2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 176 - 180
  • [3] Moderate Deviations for Classical-Quantum Channels
    Cheng, Hao-Chung
    Hsieh, Min-Hsiu
    [J]. 2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 296 - 300
  • [4] Polar Codes for Classical-Quantum Channels
    Wilde, Mark M.
    Guha, Saikat
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (02) : 1175 - 1187
  • [5] Commitment Capacity of Classical-Quantum Channels
    Hayashi, Masahito
    Warsi, Naqueeb Ahmad
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (08) : 5083 - 5099
  • [6] Additivity in Classical-Quantum Wiretap Channels
    Tikku, Arkin
    Renes, Joseph M.
    Berta, Mario
    [J]. 2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 1996 - 2001
  • [7] Classical capacity of classical-quantum arbitrarily varying channels
    Ahlswede, Rudolf
    Blinovsky, Vladimir
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (02) : 526 - 533
  • [9] Concavity of the auxiliary function appearing in quantum reliability function
    Fujii, Jun Ichi
    Nakamoto, Ritsuo
    Yanagi, Kenjiro
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (07) : 3310 - 3313
  • [10] Covert Communication over Classical-Quantum Channels
    Sheikholeslami, Azadeh
    Bash, Boulat A.
    Towsley, Don
    Goeckel, Dennis
    Guha, Saikat
    [J]. 2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 2064 - 2068