Digital Twin-Enabled Decision Support in Mission Engineering and Route Planning

被引:11
|
作者
Lee, Eugene Boon Kien [1 ]
Van Bossuyt, Douglas L. [1 ]
Bickford, Jason F. [1 ]
机构
[1] Naval Postgrad Sch, Syst Engn Dept, Monterey, CA 93943 USA
来源
SYSTEMS | 2021年 / 9卷 / 04期
关键词
digital twin; model-based systems engineering; mission engineering; multi-attribute utility theory; DEFINITION; THEOREM;
D O I
10.3390/systems9040082
中图分类号
C [社会科学总论];
学科分类号
03 ; 0303 ;
摘要
This article presents a Model-Based Systems Engineering (MBSE) methodology for the development of a Digital Twin (DT) for an Unmanned Aerial System (UAS) with the ability to demonstrate route selection capability with a Mission Engineering (ME) focus. It reviews the concept of ME and integrates ME with a MBSE framework for the development of the DT. The methodology is demonstrated through a case study where the UAS is deployed for a Last Mile Delivery (LMD) mission in a military context where adversaries are present, and a route optimization module recommends an optimal route to the user based on a variety of inputs including potential damage or destruction of the UAS by adversary action. The optimization module is based on Multiple Attribute Utility Theory (MAUT) which analyzes predefined criteria which the user assessed would enable the successful conduct of the UAS mission. The article demonstrates that the methodology can execute a ME analysis for route selection to support a user's decision-making process. The discussion section highlights the key MBSE artifacts and also highlights the benefits of the methodology which standardizes the decision-making process thereby reducing the negative impact of human factors which may deviate from the predefined criteria.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Digital Twin-Enabled Modelling of a Multivariable Temperature Uniformity Control System
    Araque, Juan Gabriel
    Angel, Luis
    Viola, Jairo
    Chen, Yangquan
    ELECTRONICS, 2024, 13 (08)
  • [22] Digital twin-enabled real-time synchronization for planning, scheduling, and execution in precast on-site assembly
    Jiang, Yishuo
    Li, Ming
    Li, Mingxing
    Liu, Xinlai
    Zhong, Ray Y.
    Pan, Wei
    Huang, George Q.
    AUTOMATION IN CONSTRUCTION, 2022, 141
  • [23] A Digital Twin-Enabled Cyber-Physical System Approach for Mixed Packaging
    Nikolakis, Nikolaos
    Siaterlis, George
    Bampoula, Xanthi
    Papadopoulos, Ilias
    Tsoukaladelis, Thodoris
    Alexopoulos, Kosmas
    SPS 2022, 2022, 21 : 485 - 496
  • [24] Advanced digital twin-enabled fault diagnosis framework for unmanned vehicle systems
    Li, Junfeng
    Wang, Jianyu
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (07)
  • [25] Digital Twin-Enabled Intelligent DDoS Detection Mechanism for Autonomous Core Networks
    Yigit Y.
    Bal B.
    Karameseoglu A.
    Duong T.Q.
    Canberk B.
    IEEE Communications Standards Magazine, 2022, 6 (03): : 38 - 44
  • [26] Digital twin-enabled adaptive scheduling strategy based on deep reinforcement learning
    Gan, XueMei
    Zuo, Ying
    Zhang, AnSi
    Li, ShaoBo
    Tao, Fei
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2023, 66 (07) : 1937 - 1951
  • [27] Digital Twin-Enabled Smart Maritime Logistics Management in the Context of Industry 5.0
    Zhou, Fuli
    Yu, Kangzhen
    Xie, Wei
    Lyu, Jieyin
    Zheng, Zhong
    Zhou, Shouqin
    IEEE ACCESS, 2024, 12 : 10920 - 10931
  • [28] Green Resource Allocation with DDPG for Knowledge Learning in Digital Twin-enabled Edges
    He, Xiaoming
    Mao, Yingchi
    Liu, Yinqiu
    Zhang, Benteng
    Jiang, Yunzhe
    Hong, Yan
    2023 IEEE 98TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-FALL, 2023,
  • [29] Digital twin-enabled adaptive scheduling strategy based on deep reinforcement learning
    GAN XueMei
    ZUO Ying
    ZHANG AnSi
    LI ShaoBo
    TAO Fei
    Science China(Technological Sciences), 2023, 66 (07) : 1937 - 1951
  • [30] Resources-Efficient Adaptive Federated Learning for Digital Twin-Enabled IIoT
    Qiao, Dewen
    Li, Mingyan
    Guo, Songtao
    Zhao, Jun
    Xiao, Bin
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (04): : 3639 - 3652