RSAMSR: A deep neural network based on residual self-encoding and attention mechanism for image super-resolution

被引:6
|
作者
Yang, Xin [1 ]
Wang, Shiyu [1 ]
Han, Jiali [1 ]
Guo, Yingqing [1 ]
Li, Tao [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Automation Engn, Nanjing 210016, Peoples R China
来源
OPTIK | 2021年 / 245卷
基金
中国国家自然科学基金;
关键词
Super-resolution; Self-encoding network; Attention mechanism; Residual network; Convolution neural network (CNN);
D O I
10.1016/j.ijleo.2021.167736
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper proposes an improved residual self-encoding and attention mechanism super-resolution (RSAMSR) network. Firstly, we construct a new structure through the multi-path convolution and design an attention mechanism module. Then the input data are divided into high and low-frequency components sent to the residual network with different depths for processing based on the spatial scaling theory. Finally, we introduce a self-encoding network to remove image noise. The model uses the L1 loss function for data training on the DIV2K data set and is compared with some state-of-the-art SR networks in four different public datasets of Set5, Set14, B100, and Urban100 under the magnification factor x2, x3, and x4. Detailed experimental results show that the proposed model has fewer model parameters, the best objective criteria PSNR and SSIM, and the best subjective visual effect.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Deep Residual Network for Single Image Super-Resolution
    Wang, Haimin
    Liao, Kai
    Yan, Bin
    Ye, Run
    ICCCV 2019: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON CONTROL AND COMPUTER VISION, 2019, : 66 - 70
  • [22] Adaptive Residual Neural Network for Image Super-Resolution
    Li, Weiwei
    Li, Xinlong
    Liu, Zhenbing
    MIPPR 2019: PARALLEL PROCESSING OF IMAGES AND OPTIMIZATION TECHNIQUES; AND MEDICAL IMAGING, 2020, 11431
  • [23] Super-Resolution Reconstruction of Accelerated Image Based on Deep Residual Network
    Xi Zhihong
    Hou Caiyan
    Yuan Kunpeng
    Xue Zhuoqun
    ACTA OPTICA SINICA, 2019, 39 (02)
  • [24] Attention mechanism feedback network for image super-resolution
    Chen, Xiao
    Jing, Ruyun
    Suna, Chaowen
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (04)
  • [25] Neural network feature learning based on image self-encoding
    Liu, Yangyang
    Tian, Minghua
    Xu, Chang
    Zhao, Lixiang
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2020, 17 (02)
  • [26] Deep learning super-resolution electron microscopy based on deep residual attention network
    Wang, Jia
    Lan, Chuwen
    Wang, Caiyong
    Gao, Zehua
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2021, 31 (04) : 2158 - 2169
  • [27] Lightweight image super-resolution with multiscale residual attention network
    Xiao, Cunjun
    Dong, Hui
    Li, Haibin
    Li, Yaqian
    Zhang, Wenming
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (04)
  • [28] Efficient residual attention network for single image super-resolution
    Fangwei Hao
    Taiping Zhang
    Linchang Zhao
    Yuanyan Tang
    Applied Intelligence, 2022, 52 : 652 - 661
  • [29] Channel attention and residual concatenation network for image super-resolution
    Cai T.-J.
    Peng X.-Y.
    Shi Y.-P.
    Huang J.
    Peng, Xiao-Yu (pengxy96@qq.com), 1600, Chinese Academy of Sciences (29): : 142 - 151
  • [30] Efficient residual attention network for single image super-resolution
    Hao, Fangwei
    Zhang, Taiping
    Zhao, Linchang
    Tang, Yuanyan
    APPLIED INTELLIGENCE, 2022, 52 (01) : 652 - 661