ε - Approximate Controllability for the Semilinear Fuzzy Integrodifferential Equations

被引:0
|
作者
Kwun, Young Chel [2 ]
Kim, Jeong Soon [2 ]
Park, Min Ji [2 ]
Park, Jin Han [1 ]
机构
[1] Pukyong Natl Univ, Dept Appl Math, Pusan 608737, South Korea
[2] Dong A Univ, Dept Math, Pusan 604714, South Korea
关键词
SYSTEMS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we study the epsilon-approximate controllability for the semilinear fuzzy integrodifferential control system in E-N(1) by using the concept of fuzzy number whose values are normal, convex, upper semicontinuous and compactly supported interval in E-N(1).
引用
收藏
页码:1171 / 1179
页数:9
相关论文
共 50 条
  • [31] BOUNDARY APPROXIMATE CONTROLLABILITY FOR SEMILINEAR HEAT-EQUATIONS
    FABRE, C
    PUEL, JP
    ZUAZUA, E
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1993, 185 : 524 - 530
  • [32] Approximate Controllability for Semilinear Differential Equations with Unbounded Delay
    Wang, Lianwen
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 4028 - 4032
  • [33] APPROXIMATE CONTROLLABILITY FOR SEMILINEAR COMPOSITE FRACTIONAL RELAXATION EQUATIONS
    Fan, Zhenbin
    Dong, Qixiang
    Li, Gang
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (01) : 267 - 284
  • [34] Approximate Boundary Controllability for Semilinear Delay Differential Equations
    Wang, Lianwen
    JOURNAL OF APPLIED MATHEMATICS, 2011,
  • [35] Approximate Controllability for Semilinear Fractional Stochastic Evolution Equations
    Jiang, Yiming
    Ren, Jingchuang
    Wei, Yawei
    Xue, Jie
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (SUPPL 1)
  • [36] Approximate controllability for semilinear composite fractional relaxation equations
    Zhenbin Fan
    Qixiang Dong
    Gang Li
    Fractional Calculus and Applied Analysis, 2016, 19 : 267 - 284
  • [37] Approximate controllability for semilinear retarded functional differential equations
    Division of Mathematical Sciences, Pukyong National University, Pusan 608-737, Korea, Republic of
    不详
    不详
    J Dyn Control Syst, 3 (329-346):
  • [38] Approximate controllability for some integrodifferential evolution equations with nonlocal conditions
    Elghandouri, Mohammed
    Ezzinbi, Khalil
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (04) : 2030 - 2055
  • [39] Controllability of semilinear stochastic integrodifferential systems
    Balachandran, K.
    Karthikeyan, S.
    Kim, J.-H.
    KYBERNETIKA, 2007, 43 (01) : 31 - 44
  • [40] Nonlocal Controllability for the Semilinear Fuzzy Integrodifferential Equations in [inline-graphic not available: see fulltext]-Dimensional Fuzzy Vector Space
    YoungChel Kwun
    JeongSoon Kim
    MinJi Park
    JinHan Park
    Advances in Difference Equations, 2009