APEC: an accesson-based method for single-cell chromatin accessibility analysis

被引:14
|
作者
Li, Bin [1 ]
Li, Young [1 ]
Li, Kun [1 ]
Zhu, Lianbang [1 ]
Yu, Qiaoni [1 ]
Cai, Pengfei [1 ]
Fang, Jingwen [1 ,2 ]
Zhang, Wen [1 ]
Du, Pengcheng [1 ]
Jiang, Chen [1 ]
Lin, Jun [1 ]
Qu, Kun [1 ,3 ]
机构
[1] Univ Sci & Technol China, Affiliated Hosp 1, Hefei Natl Lab Phys Sci Microscale, Div Life Sci & Med,Div Mol Med,Dept Oncol, Hefei 230001, Anhui, Peoples R China
[2] HanGene Biotech, Xiaoshan Innovat Polis, Hangzhou 3CAS, Zhejiang, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence Mol Cell Sci, CAS Key Lab Innate Immun & Chron Dis, Hefei 230027, Anhui, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
scATAC-seq; Cell clustering; Accesson; Regulome; Pseudotime trajectory; RNA-SEQ; TRANSCRIPTION FACTORS; REVEALS PRINCIPLES; STEM-CELLS; CTCF; GENOME; THYMOCYTES; EXPRESSION; LANDSCAPE; APOPTOSIS;
D O I
10.1186/s13059-020-02034-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The development of sequencing technologies has promoted the survey of genome-wide chromatin accessibility at single-cell resolution. However, comprehensive analysis of single-cell epigenomic profiles remains a challenge. Here, we introduce an accessibility pattern-based epigenomic clustering (APEC) method, which classifies each cell by groups of accessible regions with synergistic signal patterns termed "accessons". This python-based package greatly improves the accuracy of unsupervised single-cell clustering for many public datasets. It also predicts gene expression, identifies enriched motifs, discovers super-enhancers, and projects pseudotime trajectories. APEC is available at .
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Dynamics and regulation of mitotic chromatin accessibility bookmarking at single-cell resolution
    Yu, Qiaoni
    Liu, Xu
    Fang, Jingwen
    Wu, Huihui
    Guo, Chuang
    Zhang, Wen
    Liu, Nianping
    Jiang, Chen
    Sha, Qing
    Yuan, Xiao
    Wang, Zhikai
    Qu, Kun
    SCIENCE ADVANCES, 2023, 9 (04)
  • [42] Single-cell chromatin accessibility and transcriptomic characterization of Behcet's disease
    Shi, Wen
    Ye, Jinguo
    Shi, Zhuoxing
    Pan, Caineng
    Zhang, Qikai
    Lin, Yuheng
    Liang, Dan
    Liu, Yizhi
    Lin, Xianchai
    Zheng, Yingfeng
    COMMUNICATIONS BIOLOGY, 2023, 6 (01)
  • [43] Single-cell chromatin accessibility and transcriptomic characterization of Behcet’s disease
    Wen Shi
    Jinguo Ye
    Zhuoxing Shi
    Caineng Pan
    Qikai Zhang
    Yuheng Lin
    Dan Liang
    Yizhi Liu
    Xianchai Lin
    Yingfeng Zheng
    Communications Biology, 6
  • [44] Author Correction: ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis
    Jeffrey M. Granja
    M. Ryan Corces
    Sarah E. Pierce
    S. Tansu Bagdatli
    Hani Choudhry
    Howard Y. Chang
    William J. Greenleaf
    Nature Genetics, 2021, 53 : 935 - 935
  • [45] SINGLE-CELL CHROMATIN ACCESSIBILITY ANALYSIS IDENTIFIES EPIGENETIC EVOLUTION IN RELAPSED ACUTE MYELOID LEUKEMIA
    Nuno, Kevin
    Azizi, Armon
    Kohnke, Thomas
    Majeti, Ravi
    EXPERIMENTAL HEMATOLOGY, 2021, 100 : S56 - S56
  • [46] Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility
    Caleb A. Lareau
    Fabiana M. Duarte
    Jennifer G. Chew
    Vinay K. Kartha
    Zach D. Burkett
    Andrew S. Kohlway
    Dmitry Pokholok
    Martin J. Aryee
    Frank J. Steemers
    Ronald Lebofsky
    Jason D. Buenrostro
    Nature Biotechnology, 2019, 37 : 916 - 924
  • [47] Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility
    Lareau, Caleb A.
    Duarte, Fabiana M.
    Chew, Jennifer G.
    Kartha, Vinay K.
    Burkett, Zach D.
    Kohlway, Andrew S.
    Pokholok, Dmitry
    Aryee, Martin J.
    Steemers, Frank J.
    Lebofsky, Ronald
    Buenrostro, Jason D.
    NATURE BIOTECHNOLOGY, 2019, 37 (08) : 916 - +
  • [48] scAMACE: model-based approach to the joint analysis of single-cell data on chromatin accessibility, gene expression and methylation
    Wangwu, Jiaxuan
    Sun, Zexuan
    Lin, Zhixiang
    BIOINFORMATICS, 2021, 37 (21) : 3874 - 3880
  • [49] Accurate Annotation for Differentiating and Imbalanced Cell Types in Single-Cell Chromatin Accessibility Data
    Jia, Yuhang
    Li, Siyu
    Jiang, Rui
    Chen, Shengquan
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (03) : 461 - 471
  • [50] ASTER: accurately estimating the number of cell types in single-cell chromatin accessibility data
    Chen, Shengquan
    Wang, Rongxiang
    Long, Wenxin
    Jiang, Rui
    BIOINFORMATICS, 2023, 39 (01)