The Hall polynomials for tame quiver algebras

被引:0
|
作者
Zhang, SH [1 ]
机构
[1] Shandong Univ, Dept Math, Jinan 250100, Peoples R China
关键词
D O I
10.1006/jabr.2000.8704
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a finite-dimensional tame quiver algebra over a finite field k. We prove that Hall polynomials exist for A. (C) 2001 Academic Press.
引用
收藏
页码:606 / 614
页数:9
相关论文
共 50 条
  • [21] Hall Polynomials and Composition Algebra of Representation Finite Algebras
    Nasr-Isfahani, A. R.
    ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (04) : 1155 - 1161
  • [22] HALL POLYNOMIALS FOR THE REPRESENTATION-FINITE HEREDITARY ALGEBRAS
    RINGEL, CM
    ADVANCES IN MATHEMATICS, 1990, 84 (02) : 137 - 178
  • [23] Universal PBW-basis of Hall-Ringel algebras and Hall polynomials
    Guo, JY
    Peng, LG
    JOURNAL OF ALGEBRA, 1997, 198 (02) : 339 - 351
  • [24] On some Hall polynomials over a quiver of type (D)over-tilde4
    Szanto, Csaba
    Szollosi, Istvan
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2020, 12 (02) : 395 - 404
  • [25] Quiver Hopf algebras
    van Oystaeyen, F
    Zhang, P
    JOURNAL OF ALGEBRA, 2004, 280 (02) : 577 - 589
  • [26] Quiver Poisson algebras
    Yao, Yuan
    Ye, Yu
    Zhang, Pu
    JOURNAL OF ALGEBRA, 2007, 312 (02) : 570 - 589
  • [27] Tame key polynomials
    Dutta, Arpan
    Kuhlmann, Franz-Viktor
    JOURNAL OF ALGEBRA, 2023, 629 : 162 - 190
  • [28] The elliptic Hall algebra, Cherednik Hecke algebras and Macdonald polynomials
    Schiffmann, O.
    Vasserot, E.
    COMPOSITIO MATHEMATICA, 2011, 147 (01) : 188 - 234
  • [29] Hall-Littlewood polynomials and characters of affine Lie algebras
    Bartlett, Nick
    Warnaar, S. Ole
    ADVANCES IN MATHEMATICS, 2015, 285 : 1066 - 1105
  • [30] ON DERIVED TAME ALGEBRAS
    Bautista, Raymundo
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2007, 13 (01): : 25 - 54