On pruning with the MDL Score

被引:4
|
作者
Chen, Eunice Yuh-Jie [1 ]
Darwiche, Adnan [1 ]
Choi, Arthur [1 ]
机构
[1] Univ Calif Los Angeles, Comp Sci Dept, Los Angeles, CA 90024 USA
关键词
Bayesian networks; Structure learning; BAYESIAN NETWORKS;
D O I
10.1016/j.ijar.2017.10.023
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The space of Bayesian network structures is prohibitively large and hence numerous techniques have been developed to prune this search space, but without eliminating the optimal structure. Such techniques are critical for structure learning to scale to larger datasets with more variables. Prior works exploited properties of the MDL score to prune away large regions of the search space that can be safely ignored by optimal structure learning algorithms. In this paper, we propose new techniques for pruning regions of the search space that can be safely ignored by algorithms that enumerate the k-best Bayesian network structures. Empirically, these techniques allow a state-of-the-art structure enumeration algorithm to scale to datasets with significantly more variables. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:363 / 375
页数:13
相关论文
共 50 条
  • [41] Renishaw Completes Acquisition of MDL
    不详
    GIM INTERNATIONAL-THE WORLDWIDE MAGAZINE FOR GEOMATICS, 2013, 27 (03): : 11 - 11
  • [42] Enhanced MDL with Application to Atypicality
    Sabeti, Elyas
    Host-Madsen, Anders
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017,
  • [43] An MDL framework for data clustering
    Kontkanen, P
    Myllymäki, P
    Buntine, W
    Rissanen, J
    Tirri, H
    ADVANCES IN MINIMUM DESCRIPTION LENGTH THEORY AND APPLICATIONS, 2005, : 323 - 353
  • [44] The effect of distortion on the MDL model
    Gronich, Y
    Zamir, R
    2001 IEEE INFORMATION THEORY WORKSHOP, PROCEEDINGS, 2001, : 156 - 157
  • [45] PAC-MDL bounds
    Blum, A
    Langford, J
    LEARNING THEORY AND KERNEL MACHINES, 2003, 2777 : 344 - 357
  • [46] CLOSURE PROVISIONS IN MDL SETTLEMENTS
    Rave, D. Theodore
    FORDHAM LAW REVIEW, 2017, 85 (05) : 2175 - 2201
  • [47] The EPA MDL Procedure - Then and Now
    Bennett, Jack T.
    Turner, Elizabeth A.
    Johnson, Mary
    JOURNAL OF TESTING AND EVALUATION, 2024, 52 (05) : 2685 - 2698
  • [48] MDL Hierarchical Clustering for Stemmatology
    Lai, Po-Hsiang
    Roos, Teemu
    O'Sullivan, Joseph A.
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 1403 - 1407
  • [49] Refinements of MDL and MML coding
    Computer Science, Monash University, Clayton, Vic. 3168, Australia
    Comput J, 4 (330-337):
  • [50] Using MDL for grammar induction
    Adriaans, Pieter
    Jacobs, Ceriel
    GRAMMATICAL INFERENCE: ALGORITHMS AND APPLICATIONS, PROCEEDINGS, 2006, 4201 : 293 - 306