Time evolution of the radial perturbations and linear stability of solitons and black holes in a generalized Skyrme model

被引:6
|
作者
Doneva, Daniela D. [1 ,2 ]
Kokkotas, Kostas D. [2 ]
Stefanov, Ivan Zh. [3 ]
Yazadjiev, Stoytcho S. [4 ]
机构
[1] St Kliment Ohridski Univ Sofia, Dept Astron, Fac Phys, Sofia 1164, Bulgaria
[2] Univ Tubingen, D-72076 Tubingen, Germany
[3] Tech Univ Sofia, Dept Appl Phys, Sofia 1000, Bulgaria
[4] St Kliment Ohridski Univ Sofia, Dept Theoret Phys, Fac Phys, Sofia 1164, Bulgaria
来源
PHYSICAL REVIEW D | 2011年 / 84卷 / 08期
关键词
SCHWARZSCHILD; UNIQUENESS; FIELD;
D O I
10.1103/PhysRevD.84.084021
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the time evolution of the radial perturbation for self-gravitating soliton and black-hole solutions in a generalized Skyrme model in which a dilaton is present. The background solutions were obtained recently by some of the authors. For both the solitons and the black holes two branches of solutions exist which merge at some critical value of the corresponding parameter. The results show that, similar to the case without a scalar field, one of the branches is stable against radial perturbations and the other is unstable. The conclusions for the linear stability of the black holes in the generalized Skyrme model are also in agreement with the results from the thermodynamical stability analysis based on the turning point method.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Axial perturbations of hairy black holes in generalized scalar-tensor theories
    Antoniou, Georgios
    Macedo, Caio F. B.
    Maselli, Andrea
    Sotiriou, Thomas P.
    PHYSICAL REVIEW D, 2024, 110 (02)
  • [32] Linear stability of slowly rotating Kerr black holes
    Dietrich Häfner
    Peter Hintz
    András Vasy
    Inventiones mathematicae, 2021, 223 : 1227 - 1406
  • [33] Linear stability of slowly rotating Kerr black holes
    Hafner, Dietrich
    Hintz, Peter
    Vasy, Andras
    INVENTIONES MATHEMATICAE, 2021, 223 (03) : 1227 - 1406
  • [34] A note on the linear stability of black holes in quadratic gravity
    Dioguardi, Christian
    Rinaldi, Massimiliano
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (11):
  • [35] A note on the linear stability of black holes in quadratic gravity
    Christian Dioguardi
    Massimiliano Rinaldi
    The European Physical Journal Plus, 135
  • [36] Linear stability of nonbidiagonal black holes in massive gravity
    Babichev, Eugeny
    Brito, Richard
    Pani, Paolo
    PHYSICAL REVIEW D, 2016, 93 (04)
  • [37] Stability of linear dilaton black holes at the Hagedorn temperature
    Bertoldi, Gaetano
    Hoyos, Carlos
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (08):
  • [38] Radial perturbations of scalar-Gauss-Bonnet black holes beyond spontaneous scalarization
    Blazquez-Salcedo, Jose Luis
    Doneva, Daniela D.
    Kunz, Jutta
    Yazadjiev, Stoytcho S.
    PHYSICAL REVIEW D, 2022, 105 (12)
  • [39] Stability of generalized Einstein-Maxwell-scalar black holes
    Radouane Gannouji
    Yolbeiker Rodríguez Baez
    Journal of High Energy Physics, 2022
  • [40] Stability of generalized Einstein-Maxwell-scalar black holes
    Gannouji, Radouane
    Rodriguez Baez, Yolbeiker
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (02)