DETERMINATION OF TIME DEPENDENT DIFFUSION COEFFICIENT IN TIME FRACTIONAL DIFFUSION EQUATIONS BY FRACTIONAL SCALING TRANSFORMATIONS METHOD

被引:0
|
作者
Bayrak, Mine Aylin [1 ]
Demir, Ali [1 ]
机构
[1] Kocaeli Univ, Dept Math, Kocaeli, Turkey
关键词
Time fractional diffusion equation; fractional scaling transformations method; modified Riemann-Liouville fractional derivative; Inverse problem; PARTIAL-DIFFERENTIAL-EQUATIONS; SERIES;
D O I
10.21915/BIMAS.2021402
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This study is devoted to investigation of inverse problem of identifying unknown time-dependent diffusion coefficient in time fractional diffusion equation in the sense of the modified Riemann-Liouville fractional derivative, by employing fractional scaling transformations method. By means of this method fractional order derivatives turns into integer order derivatives which allows us to deal with the easier problem. After establishing the solution and unknown coefficient of integer order diffusion problem, by utilizing the inverse transformation, we construct the solution and unknown coefficient of time fractional diffusion problem. Presented examples illustrate that identified unknown coefficient and the solution of the problem are in a high agreement with the exact solution of the corresponding the inverse problem.
引用
收藏
页码:303 / 319
页数:17
相关论文
共 50 条
  • [31] Problem of Determining the Time Dependent Coefficient in the Fractional Diffusion-Wave Equation
    Subhonova, Z. A.
    Rahmonov, A. A.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (15) : 3747 - 3760
  • [32] Problem of Determining the Time Dependent Coefficient in the Fractional Diffusion-Wave Equation
    Z. A. Subhonova
    A. A. Rahmonov
    Lobachevskii Journal of Mathematics, 2021, 42 : 3747 - 3760
  • [33] A class of time-fractional diffusion equations with generalized fractional derivatives
    Alikhanov, Anatoly A.
    Huang, Chengming
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 414
  • [34] Fibonacci wavelet method for time fractional convection-diffusion equations
    Yadav, Pooja
    Jahan, Shah
    Nisar, Kottakkaran Sooppy
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (04) : 2639 - 2655
  • [35] A discontinuous Galerkin method for time fractional diffusion equations with variable coefficients
    Mustapha, K.
    Abdallah, B.
    Furati, K. M.
    Nour, M.
    NUMERICAL ALGORITHMS, 2016, 73 (02) : 517 - 534
  • [36] A NOVEL FINITE ELEMENT METHOD FOR A CLASS OF TIME FRACTIONAL DIFFUSION EQUATIONS
    Sun, H. G.
    Chen, W.
    Sze, K. Y.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2011, VOL 3, PTS A AND B, 2012, : 369 - 376
  • [37] A discontinuous Galerkin method for time fractional diffusion equations with variable coefficients
    K. Mustapha
    B. Abdallah
    K. M. Furati
    M. Nour
    Numerical Algorithms, 2016, 73 : 517 - 534
  • [38] A Local Discontinuous Galerkin Method for Time-Fractional Diffusion Equations
    Zhankuan Zeng
    Yanping Chen
    Acta Mathematica Scientia, 2023, 43 : 839 - 854
  • [39] Boundary particle method for Laplace transformed time fractional diffusion equations
    Fu, Zhuo-Jia
    Chen, Wen
    Yang, Hai-Tian
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 235 : 52 - 66
  • [40] A LOCAL DISCONTINUOUS GALERKIN METHOD FOR TIME-FRACTIONAL DIFFUSION EQUATIONS
    曾展宽
    陈艳萍
    Acta Mathematica Scientia, 2023, 43 (02) : 839 - 854