Modeling the dynamics of nutrient-phytoplankton-zooplankton system with variable-order fractional derivatives

被引:79
|
作者
Ghanbari, Behzad [1 ]
Gomez-Aguilar, J. F. [2 ]
机构
[1] Kermanshah Univ Technol, Dept Engn Sci, Kermanshah, Iran
[2] CONACyT Tecnol Nacl Mexico CENIDET, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
关键词
Fractional calculus; Variable-order fractional derivatives; Nutrient-phytoplankton-zooplankton model; Lagrange interpolation; PREDICTOR-CORRECTOR APPROACH; DIFFERENTIAL-EQUATIONS; STABILITY; SCHEME; ERROR;
D O I
10.1016/j.chaos.2018.09.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extended the nutrient-phytoplankton-zooplankton model involving variable-order fractional differential operators of Liouville-Caputo, Caputo-Fabrizio and Atangana-Baleanu. Variable-order fractional operators permits model and describe accurately real world problems, for example, diffusion or spread of nutrients or species in different states. Particularly, we model the interaction of nutrient phytoplankton and its predator zooplankton. The variable-order fractional numerical scheme based on the fundamental theorem of fractional calculus and the Lagrange polynomial interpolation was consider. Numerical simulation results are provided for illustrating the effectiveness and applicability of the algorithm to solve variable-order fractional differential equations. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:114 / 120
页数:7
相关论文
共 50 条
  • [41] An improved Maxwell creep model for rock based on variable-order fractional derivatives
    Wu, Fei
    Liu, Jian Feng
    Wang, Jun
    [J]. ENVIRONMENTAL EARTH SCIENCES, 2015, 73 (11) : 6965 - 6971
  • [42] Dynamics of variable-yield nutrient–phytoplankton–zooplankton models with nutrient recycling and self-shading
    S. R.-J. Jang
    [J]. Journal of Mathematical Biology, 2000, 40 : 229 - 250
  • [43] Numerical Treatments for Crossover Cancer Model of Hybrid Variable-Order Fractional Derivatives
    Sweilam, Nasser
    Al-Mekhlafi, Seham
    Ahmed, Aya
    Alsheri, Ahoud
    Abo-Eldahab, Emad
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 140 (02): : 1619 - 1645
  • [44] An improved Maxwell creep model for rock based on variable-order fractional derivatives
    Fei Wu
    Jian Feng Liu
    Jun Wang
    [J]. Environmental Earth Sciences, 2015, 73 : 6965 - 6971
  • [45] Numerical simulations of submesoscale balanced vertical velocity forcing unsteady nutrient-phytoplankton-zooplankton distributions
    Viudez, Alvaro
    Claret, Mariona
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2009, 114
  • [46] Numerical treatment for time fractional order phytoplankton-toxic phytoplankton-zooplankton system
    Priyadarsini, D.
    Sahu, P. K.
    Routaray, M.
    Chalishajar, D.
    [J]. AIMS MATHEMATICS, 2024, 9 (02): : 3349 - 3368
  • [47] Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system
    Javidi, Mohammad
    Ahmad, Bashir
    [J]. ECOLOGICAL MODELLING, 2015, 318 : 8 - 18
  • [48] On a New Definition of Fractional Variable-Order Derivative
    Sierociuk, Dominik
    Malesza, Wiktor
    Macias, Michal
    [J]. PROCEEDINGS OF THE 2013 14TH INTERNATIONAL CARPATHIAN CONTROL CONFERENCE (ICCC), 2013, : 340 - 345
  • [49] Numerical simulations for fractional variable-order equations
    Mozyrska, Dorota
    Oziablo, Piotr
    [J]. IFAC PAPERSONLINE, 2018, 51 (04): : 853 - 858
  • [50] Variable-order fuzzy fractional PID controller
    Liu, Lu
    Pan, Feng
    Xue, Dingyu
    [J]. ISA TRANSACTIONS, 2015, 55 : 227 - 233